cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324595 Number of colored integer partitions of 2n such that all colors from an n-set are used and parts differ by size or by color.

This page as a plain text file.
%I A324595 #32 Jan 15 2024 12:34:00
%S A324595 1,1,5,19,85,381,1751,8135,38173,180415,857695,4096830,19645975,
%T A324595 94523729,456079769,2206005414,10693086637,51930129399,252617434619,
%U A324595 1230714593340,6003931991895,29325290391416,143393190367102,701862880794183,3438561265961263
%N A324595 Number of colored integer partitions of 2n such that all colors from an n-set are used and parts differ by size or by color.
%H A324595 Alois P. Heinz, <a href="/A324595/b324595.txt">Table of n, a(n) for n = 0..1433</a>
%H A324595 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>
%F A324595 a(n) = A308680(2n,n).
%F A324595 a(n) ~ c * d^n / sqrt(n), where d = 5.0032778445310926321307990027... and c = 0.2798596129161126875318997... - _Vaclav Kotesovec_, Sep 14 2019
%F A324595 a(n) = [x^(2n)] (-1 + Product_{j>=1} (1 + x^j))^n. - _Alois P. Heinz_, Jan 29 2021
%e A324595 a(2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
%p A324595 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
%p A324595       b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
%p A324595     end:
%p A324595 a:= n-> add(b(2*n$2, n-i)*(-1)^i*binomial(n, i), i=0..n):
%p A324595 seq(a(n), n=0..25);
%p A324595 # second Maple program:
%p A324595 b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
%p A324595      `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
%p A324595     end:
%p A324595 g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n+1),
%p A324595       (q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))
%p A324595     end:
%p A324595 a:= n-> g(n$2):
%p A324595 seq(a(n), n=0..25);  # _Alois P. Heinz_, Jan 29 2021
%t A324595 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k] Binomial[k, j]][n - i j], {j, 0, Min[k, n/i]}]]];
%t A324595 a[n_] := Sum[b[2n, 2n, n - i] (-1)^i Binomial[n, i], {i, 0, n}];
%t A324595 a /@ Range[0, 25] (* _Jean-François Alcover_, May 06 2020, after Maple *)
%t A324595 Table[SeriesCoefficient[(-1 + QPochhammer[-1, Sqrt[x]]/2)^n, {x, 0, n}], {n, 0, 25}] (* _Vaclav Kotesovec_, Jan 15 2024 *)
%t A324595 (* Calculation of constant d: *) 1/r /. FindRoot[{2 + 2*s == QPochhammer[-1, Sqrt[r*s]], Sqrt[r]*Derivative[0, 1][QPochhammer][-1, Sqrt[r*s]] == 4*Sqrt[s]}, {r, 1/5}, {s, 1}, WorkingPrecision -> 120] (* _Vaclav Kotesovec_, Jan 15 2024 *)
%Y A324595 Cf. A000009, A270913, A308680, A340987.
%K A324595 nonn
%O A324595 0,3
%A A324595 _Alois P. Heinz_, Sep 03 2019