This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324596 #8 Jun 24 2023 16:56:20 %S A324596 1,2,270,74692800,419731620267960000, %T A324596 252716802910471719823692648960000, %U A324596 59736659298524125157504488525739821430187940800000000,16079377413231597423103950774423398920424350187193326745026311068057600000000000 %N A324596 a(n) = n!^(3*n) * Product_{k=1..n} binomial(n + 1/k^2, n). %F A324596 a(n) ~ n!^(3*n) * n^(Pi^2/6) / A303670. %F A324596 a(n) ~ n^(3*n*(2*n+1)/2 + Pi^2/6) * (2*Pi)^(3*n/2) / exp(3*n^2 - 1/4 - gamma*Pi^2/6 + c), where gamma is the Euler-Mascheroni constant A001620 and c = A306774 = Sum_{k>=2} (-1)^k * Zeta(k) * Zeta(2*k) / k. %p A324596 a:= n-> n!^(3*n)*mul(binomial(n+1/k^2, n), k=1..n): %p A324596 seq(a(n), n=0..7); # _Alois P. Heinz_, Jun 24 2023 %t A324596 Table[n!^(3*n) * Product[Binomial[n + 1/k^2, n], {k, 1, n}], {n, 1, 8}] %Y A324596 Cf. A303670, A306760, A306774, A324589, A324597. %K A324596 nonn %O A324596 0,2 %A A324596 _Vaclav Kotesovec_, Mar 09 2019 %E A324596 a(0)=1 prepended by _Alois P. Heinz_, Jun 24 2023