This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324598 #10 Jul 13 2019 14:13:06 %S A324598 0,2,3,7,4,14,5,23,12,18,6,34,7,47,25,33,17,43,8,62,29,49,9,79,42,52, %T A324598 22,78,10,98,36,84,11,119,63,75,52,93,40,108,27,123,12,142,74,104,13, %U A324598 167,88,102,61,137,47,157,14,194,80,128,32,178 %N A324598 Irregular triangle with the representative solutions of the Diophantine equation x^2 + x - 1 congruent to 0 modulo N(n), with N(n) = A089270(n), for n >= 1. %C A324598 The length of row n is 1 for n = 1 and n = 2, and for n >= 3 it is 2^{r1 + r4} with the number r1 and r4 of distinct primes congruent to 1 and 4 modulo 5, respectively, in the prime number factorization of N(n). E.g., n = 29, N = 209 = 11*19, has r1 = 1 and r4 = 1, with four solutions. The next rows with four solutions are n = 41, 43, 59,..., with N = 319, 341, 451, ... ; for n = 643, 688, 896, ..., with N = 6061, 6479, 8569, ..., there are eight solutions. %C A324598 For N(1) = 1 every integer solves this Diophantine equation, and the representative solution is 0. %C A324598 For N(2) = 5 there is only one representative solution, namely 2. %C A324598 For n >= 3 the representative solutions come in nonnegtive power of 2 pairs (x1, x2) with x2 = N - 1 - x1. %C A324598 See the link in A089270 to the W. Lang paper, section 3, and Table 6. %e A324598 The irregular triangle T(n, k) begins (pairs (x, N - 1 - x) in brackets): %e A324598 n, N \ k 1 2 3 4 ... %e A324598 ---------------------------------- %e A324598 1, 1: 0 %e A324598 2, 5: 2 %e A324598 3, 11: (3 7) %e A324598 4, 19: (4 14) %e A324598 5, 29: (5 23) %e A324598 6, 31: (12 18) %e A324598 7, 41: (6 34) %e A324598 8, 55: (7 47) %e A324598 9, 59: (25 33) %e A324598 10, 61: (17 43) %e A324598 11, 71: (8 62) %e A324598 12, 79: (29 49) %e A324598 13, 89: (9 79) %e A324598 14, 95: (42 52) %e A324598 15, 101: (22 78) %e A324598 16, 109: (10 98) %e A324598 17, 121: (36 84) %e A324598 18, 131: (11 119) %e A324598 19, 139: (63 75) %e A324598 20, 145: (52 93) %e A324598 .... %e A324598 29, 209: (14 194) (80 128) %e A324598 ... %e A324598 41, 319: (139 179) (150 168) %e A324598 ... %e A324598 43, 341: (18 322) (80 260) %e A324598 ... %e A324598 59, 451: (47 403) (157 293) %e A324598 ... %Y A324598 Cf. A089270, A324599 (x^2 - 5 == 0 (mod N)). %K A324598 nonn,tabf %O A324598 1,2 %A A324598 _Wolfdieter Lang_, Jul 08 2019