This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324599 #11 Jul 13 2019 14:16:01 %S A324599 0,0,4,7,9,10,11,18,6,25,13,28,15,40,8,51,26,35,17,54,20,59,19,70,10, %T A324599 85,45,56,21,88,48,73,23,108,12,127,40,105,68,81,55,96,25,130,30,149, %U A324599 27,154,14,177,76,123,95,110,29,180,48,161,65,146 %N A324599 Irregular triangle with the representative solutions of the Diophantine equation x^2 - 5 congruent to 0 modulo N(n), with N(n) = A089270(n), for n >= 1. %C A324599 The length of row n is 1 for n = 1 and n = 2, and for n >= 3 it is 2^{r1 + r4} with the number r1 and r4 of distinct primes congruent to 1 and 4 modulo 5, respectively, in the prime number factorization of N(n). E.g., n = 29, N = 209 = 11*19, has r1 = 1 and r4 = 1, with four solutions. %C A324599 For N(1) = 1 every integer solves this Diophantine equation, and the representative solution is 0. %C A324599 For N(2) = 5 there is only one representative solution, namely 0. %C A324599 For n >= 3 the solutions come in a nonnegative power of 2 pairs, each of the type (x1, x2) with x2 = N - x1. %C A324599 See the link in A089270 to the W. Lang paper, section 3, and Table 7. %e A324599 The irregular triangle T(n, k) begins (pairs (x, N - x) in brackets): %e A324599 n, N \ k 1 2 3 4 ... %e A324599 ---------------------------------- %e A324599 1, 1: 0 %e A324599 2, 5: 0 %e A324599 3, 11: (4 7) %e A324599 4, 19: (9 10) %e A324599 5, 29: (11 18) %e A324599 6, 31: (6 25) %e A324599 7, 41: (13 28) %e A324599 8, 55: (15 40) %e A324599 9, 59: (8 51) %e A324599 10, 61: (26 35) %e A324599 11, 71: (17 54) %e A324599 12, 79: (20 59) %e A324599 13, 89: (19 70) %e A324599 14, 95: (10 85) %e A324599 15, 101: (45 56) %e A324599 16, 109: (21 88) %e A324599 17, 121: (48 73) %e A324599 18, 131: (23 108) %e A324599 19, 139: (12 127) %e A324599 20, 145: (40 105) %e A324599 .... %e A324599 29, 209: (29 180) (48 161) %e A324599 ... %e A324599 41, 319: (18 301) (40 279) %e A324599 ... %e A324599 43, 341: (37 304) (161 180) %e A324599 ... %e A324599 59, 451: (95 356) (136 315) %Y A324599 Cf. A089270, A324598 (x^2 + x - 1 == 0 (mod N)). %K A324599 nonn,tabf %O A324599 1,3 %A A324599 _Wolfdieter Lang_, Jul 08 2019