This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324602 #16 Jun 24 2019 09:24:20 %S A324602 1,1,-2,1,-3,3,1,-4,2,4,-4,1,-5,5,5,-5,-5,1,-6,9,-2,6,-12,3,-6,6,1,-7, %T A324602 14,-7,7,-21,7,7,-7,14,-7,1,-8,20,-16,2,8,-32,24,12,-8,-8,24,-8,-16,4, %U A324602 1,-9,27,-30,9,9,-45,54,-9,18,-27,3,-9,36,-27,-27,18,9,1,-10,35,-50,25,-2,10,-60,100,-40,25,-60,15,10,-10,50,-60,10,-40,60,-10,15,-10 %N A324602 Irregular triangle read by rows: T(n, k) gives the coefficients of the Girard-Waring formula for the sum of n-th power of four indeterminates in terms of their elementary symmetric functions (reverse Abramowitz-Stegun order of partitions). %C A324602 The length of row n is A001400(n), n >= 1. %C A324602 The Girard-Waring formula for the power sum p(4,n) := Sum_{j=1..4} (x_j)^n in terms of the elementary symmetric functions e_j(x_1, x_2, x_3, x_4), for j = 1, 2, 3, 4, is given by Sum_{i1=0..floor(n/4)} Sum_{i2=0...floor((n-4*i1)/3)} Sum_{i3=0...floor((n-4*i1-3*i2)/2)} ((-1)^(i1 + i3))*n*(n-1-i3-2*i2-3*i1)!/(i1!*i2!*i3!*(n-2*i3-3*i2-4*i1)!)*e_1^(n-2*i3-3*i2-4*i1)*(e_2)^i3*(e_3)^i2*(e_4)^i1, n >= 1 (the arguments of e_j have been omitted). See the W. Lang reference, Theorem 1, case N = 4, with r -> n. %C A324602 This is an array using the partitions of n, in the reverse Abramowitz-Stegun order, with all partitions with a part >= 5 eliminated. See row n of the array of Waring numbers A115131, read backwards, with these partitions omitted. %H A324602 Wolfdieter Lang, <a href="https://doi.org/10.1016/S0377-0427(97)00240-9">On sums of powers of zeros of polynomials</a>, J. Comp. Appl. Math. 89 (1998) 237-356. %F A324602 T(n, k) is the k-th coefficient of the Waring number partition array A115131(n, m) (k there is replaced here by m), read backwards, omitting all partitions which have a part >= 5. %e A324602 The irregular triangle T(n, k) begins: %e A324602 n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... %e A324602 ----------------------------------------------------------------------------- %e A324602 1: 1 %e A324602 2: 1 -2 %e A324602 3: 1 -3 3 %e A324602 4: 1 -4 2 4 -4 %e A324602 5: 1 -5 5 5 -5 -5 %e A324602 6: 1 -6 9 6 -2 -12 -6 3 6 %e A324602 7: 1 -7 14 7 -7 -21 -7 7 7 14 -7 %e A324602 8: 1 -8 20 8 -16 -32 -8 2 24 12 24 -8 -8 -16 4 %e A324602 9: 1 -9 27 9 -30 -45 -9 9 54 18 36 -9 -27 -27 -27 3 18 9 %e A324602 ... %e A324602 n = 10: 1 -10 35 10 -50 -60 -10 25 100 25 50 -2 -40 -60 -60 -40 15 10 10 60 15 -10 -10. %e A324602 ... %e A324602 ----------------------------------------------------------------------------- %e A324602 Row n = 5: p(4,5) = x_1^5 + x_2^5 + x_3^5 + x_4^5 = 1*e_1^5 - 5* e_1^3*e_2 + 5*e_1*e_2^2 + 5*e_1^2*e_3 - 5*e_2*e_3 - 5*e_1*e_4, %e A324602 with e_1 = Sum_{j=1..4} x_j, e_2 = x1*(x_2 + x_3 + x_4) + x_2*(x_3 + x_4) + x_3*x_4, e_3 = x_1*x_2*x_3 + x_1*x_2*x_4 + x_2*x_3*x_4, e_4 = Product_{i=1..4} x_j. %Y A324602 Cf. A001400, A115131, A132460 (N=2), A325477 (N=3). %K A324602 sign,tabf,easy %O A324602 1,3 %A A324602 _Wolfdieter Lang_, May 03 2019