A324603 Number of non-intersecting loops starting at (0,0) on the n X n torus consisting of steps up and to the right.
2, 4, 22, 258, 3528, 87830, 8295536
Offset: 1
Examples
On the 2 X 2 torus, the 4 walks are: [(0,0),(1,0),(0,0)] [(0,0),(0,1),(0,0)] [(0,0),(0,1),(1,1),(1,0),(0,0)] [(0,0),(1,0),(1,1),(0,1),(0,0)] On the 3 X 3 torus, the 22 walks are all equivalent to the following eleven walks by switching coordinates: [(0,0),(0,1),(0,2),(0,0)] [(0,0),(0,1),(1,1),(2,1),(2,2),(0,2),(0,0)] [(0,0),(0,1),(1,1),(2,1),(2,2),(2,0),(0,0)] [(0,0),(0,1),(1,1),(1,2),(2,2),(0,2),(0,0)] [(0,0),(0,1),(1,1),(1,2),(2,2),(2,0),(0,0)] [(0,0),(0,1),(1,1),(1,2),(1,0),(2,0),(0,0)] [(0,0),(0,1),(0,2),(1,2),(2,2),(2,0),(0,0)] [(0,0),(0,1),(0,2),(1,2),(1,0),(2,0),(0,0)] [(0,0),(0,1),(1,1),(2,1),(2,2),(0,2),(1,2),(1,0),(2,0),(0,0)] [(0,0),(0,1),(1,1),(1,2),(1,0),(2,0),(2,1),(2,2),(0,2),(0,0)] [(0,0),(0,1),(0,2),(1,2),(1,0),(1,1),(2,1),(2,2),(2,0),(0,0)]
Links
- Peter Kagey, Cycles on the torus, Programming Puzzles & Code Golf Stack Exchange.