A324604 Table read by rows: T(n,k) is the number of non-intersecting loops starting at (0,0) on the n X k torus consisting of steps up and to the right, 1 <= k <= n.
2, 2, 4, 2, 7, 22, 2, 13, 66, 258, 2, 25, 189, 898, 3528, 2, 49, 537, 3118, 14545, 87830, 2, 97, 1544, 11462, 75446, 746589, 8295536, 2, 193, 4508, 44990, 447667
Offset: 1
Examples
The T(3,2) = 7 walks on the 3 X 2 torus are: (0,0),(0,1),(0,0) (0,0),(1,0),(2,0),(0,0) (0,0),(0,1),(1,1),(1,0),(2,0),(0,0) (0,0),(0,1),(1,1),(2,1),(2,0),(0,0) (0,0),(1,0),(1,1),(2,1),(0,1),(0,0) (0,0),(1,0),(1,1),(2,1),(2,0),(0,0) (0,0),(1,0),(2,0),(2,1),(0,1),(0,0) Table begins: 2 2, 4, 2, 7, 22, 2, 13, 66, 258, 2, 25, 189, 898, 3528, 2, 49, 537, 3118, 14545, 87830, 2, 97, 1544, 11462, 75446, 746589, 8295536
Links
- Peter Kagey, Cycles on the torus, Programming Puzzles & Code Golf Stack Exchange.
Comments