This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324608 #20 Apr 10 2021 16:36:34 %S A324608 1,1,2,3,3,3,3,3,3,3,3,10,11,11,11,13,13,14,14,14,16,16,16,17,17,17, %T A324608 19,19,19,19,20,20,20,22,22,22,22,22,23,23,23,25,25,25,25,25,25,26,26, %U A324608 26,28,28,28,28,28,28,28,29,29,30,31,31,31,31,31,31,31,31 %N A324608 Number of 1's in binary expansion of A308092(n). %C A324608 Conjecture: sequence is weakly increasing. %H A324608 Robert Israel, <a href="/A324608/b324608.txt">Table of n, a(n) for n = 1..3000</a> %F A324608 a(n) = A000120(A308092(n)). %p A324608 S:= "110": %p A324608 b("0"):= 0: b("1"):= 1: %p A324608 A308092[1]:= 1: A308092[2]:= 2: t:= 3: %p A324608 for n from 3 to 300 do %p A324608 tp:= add(b(S[i])*2^(n-i),i=1..n); %p A324608 A308092[n]:= tp - t; %p A324608 t:= tp; %p A324608 S:= cat(S,convert(A308092[n],binary)); %p A324608 od: %p A324608 seq(convert(convert(A308092[n],base,2),`+`), n=1..300); # _Robert Israel_, Jun 12 2019 %t A324608 a[1]=1;a[2]=2;a[n_]:=a[n]=FromDigits[Flatten[IntegerDigits[#,2]&/@Table[a[k],{k,n-1}]][[;;n]],2]-Total@Table[a[m],{m,n-1}] %t A324608 Count[#,1]&/@Table[IntegerDigits[a[l],2],{l,70}] (* _Giorgos Kalogeropoulos_, Mar 30 2021 *) %o A324608 (Python) %o A324608 def aupton(terms): %o A324608 alst, bstr = [1, 1], "110" %o A324608 for n in range(3, terms+1): %o A324608 an = int(bstr[:n], 2) - int(bstr[:n-1], 2) %o A324608 binan = bin(an)[2:] %o A324608 alst, bstr = alst + [binan.count('1')], bstr + binan %o A324608 return alst %o A324608 print(aupton(68)) # _Michael S. Branicky_, Mar 30 2021 %Y A324608 Cf. A000120, A308092. %K A324608 nonn,base %O A324608 1,3 %A A324608 _Peter Kagey_, Jun 10 2019