This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324647 #75 Feb 16 2025 08:33:57 %S A324647 1116225,1245825,1380825,2127825,10046025,16813125,203753025, %T A324647 252880425,408553425,415433025,740361825,969523425,1369580625, %U A324647 1612924425,1763305425,2018027025,2048985225,2286684225,3341556225,3915517725,3985769025,4051698525,7085469825,7520472225 %N A324647 Odd numbers k such that 2*k is equal to bitwise-AND of 2*k and sigma(k). %C A324647 If this sequence has no terms common with A324649 (A324897, A324898), or no terms common with A324727, then there are no odd perfect numbers. %C A324647 First 22 terms factored: %C A324647 1116225 = 3^2 * 5^2 * 11^2 * 41 %C A324647 1245825 = 3^2 * 5^2 * 7^2 * 113 %C A324647 1380825 = 3^2 * 5^2 * 19^2 * 17 [Here the unitary prime is not the largest] %C A324647 2127825 = 3^2 * 5^2 * 7^2 * 193 %C A324647 10046025 = 3^4 * 5^2 * 11^2 * 41 %C A324647 16813125 = 3^2 * 5^4 * 7^2 * 61 %C A324647 203753025 = 3^2 * 5^2 * 7^2 * 18481 %C A324647 252880425 = 3^2 * 5^2 * 7^2 * 22937 %C A324647 408553425 = 3^2 * 5^2 * 7^2 * 37057 %C A324647 415433025 = 3^2 * 5^2 * 7^4 * 769 %C A324647 740361825 = 3^2 * 5^2 * 7^2 * 67153 %C A324647 969523425 = 3^4 * 5^2 * 13^2 * 2833 %C A324647 1369580625 = 3^2 * 5^4 * 7^2 * 4969 %C A324647 1612924425 = 3^2 * 5^2 * 7^2 * 146297 %C A324647 1763305425 = 3^2 * 5^2 * 7^2 * 159937 %C A324647 2018027025 = 3^2 * 5^2 * 7^2 * 183041 %C A324647 2048985225 = 3^2 * 5^2 * 7^2 * 185849 %C A324647 2286684225 = 3^2 * 5^2 * 7^2 * 207409 %C A324647 3341556225 = 3^2 * 5^2 * 7^2 * 303089 %C A324647 3915517725 = 3^4 * 5^2 * 7^2 * 39461 %C A324647 3985769025 = 3^4 * 5^2 * 7^2 * 40169 %C A324647 4051698525 = 3^2 * 5^2 * 7^2 * 367501. %C A324647 Compare the above factorizations to the various constraints listed for odd perfect numbers in the Wikipedia article. However, this is NOT a subsequence of A191218 (A228058), see below. %C A324647 The first terms that do not belong to A191218 are 399736269009 = (3 * 7^2 * 11 * 17 * 23)^2 and 1013616036225 = (3^2 * 5 * 13 * 1721)^2, that both occur instead in A325311. The first terms with omega(n) <> 4 are 9315603297, 60452246925, 68923392525, and 112206463425. They factor as 3^2 * 7^2 * 11^2 * 13^2 * 1033, 3^2 * 5^2 * 7^2 * 17^2 * 18973, 3^2 * 5^2 * 13^2 * 19^2 * 5021, 3^2 * 5^2 * 7^2 * 199^2 * 257. - _Giovanni Resta_, Apr 21 2019 %C A324647 From _Antti Karttunen_, Jan 13 2025: (Start) %C A324647 Because of the "monotonic property" of bitwise-and, this is a subsequence of nondeficient numbers (A023196). %C A324647 Both odd perfect numbers, and quasiperfect numbers, if such numbers exist at all, would satisfy the condition for being included in this sequence. Furthermore, any term must be either an odd square with an odd abundancy (in A156942), which subset is given in A379490 (where quasiperfect numbers must thus reside, if they exist), or be included in A228058, i.e., satisfy the Euler's criteria for odd perfect numbers. %C A324647 (End) %H A324647 Giovanni Resta, <a href="/A324647/b324647.txt">Table of n, a(n) for n = 1..500</a> %H A324647 Charles Greathouse and Eric W. Weisstein, <a href="https://mathworld.wolfram.com/OddPerfectNumber.html">MathWorld: Odd perfect number</a> %H A324647 Wikipedia, <a href="https://en.wikipedia.org/wiki/Perfect_number#Odd_perfect_numbers">Perfect number: Odd perfect numbers</a> %H A324647 <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a> %F A324647 {Odd k such that 2k = A318468(k)}. %o A324647 (PARI) for(n=1,oo,if((n%2)&&((2*n)==bitand(2*n,sigma(n))),print1(n,", "))); %Y A324647 Odd terms of A324652. %Y A324647 Cf. A191218, A228058, A318468, A324649, A324659, A324718, A324719, A324722, A324727, A324880, A324897, A324898, A325311, A379490 (square terms). %K A324647 nonn %O A324647 1,1 %A A324647 _Antti Karttunen_, Mar 14 2019 %E A324647 a(23)-a(24) from _Giovanni Resta_, Apr 21 2019