This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324650 #11 Mar 10 2019 19:32:12 %S A324650 1,1,2,2,6,6,4,4,8,8,24,24,20,20,40,40,120,120,100,100,200,200,600, %T A324650 600,500,500,1000,1000,3000,3000,6,6,12,12,36,36,24,24,48,48,144,144, %U A324650 120,120,240,240,720,720,600,600,1200,1200,3600,3600,3000,3000,6000,6000,18000,18000,42,42,84,84,252,252,168,168,336,336,1008,1008 %N A324650 a(n) = A000010(A276086(n)). %C A324650 Terms are duplicated because phi(2*(2n+1)) = phi(2n+1) for all n >= 0. %H A324650 Antti Karttunen, <a href="/A324650/b324650.txt">Table of n, a(n) for n = 0..2310</a> %H A324650 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A324650 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A324650 a(n) = A000010(A276086(n)). %F A324650 a(2n+1) = a(2n) for all n >= 0. %F A324650 For n >= 1, a(A002110(n-1)) = A000040(n)-1. %o A324650 (PARI) A324650(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr), m *= (prime(i)-1)*(prime(i)^(((n%nextpr)/pr)-1)); n-=(n%nextpr));pr=nextpr); (m); }; %o A324650 (PARI) %o A324650 A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; %o A324650 A324650(n) = eulerphi(A276086(n)); %Y A324650 Cf. A000010, A002110, A276086, A324651 (bisection). %Y A324650 Cf. also A267263, A276150, A324653, A324655 for omega, bigomega, sigma and tau analogs. %Y A324650 Cf. also A290077. %K A324650 nonn %O A324650 0,3 %A A324650 _Antti Karttunen_, Mar 10 2019