This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324652 #29 Mar 11 2024 12:27:23 %S A324652 6,12,18,20,24,28,36,40,48,56,80,88,96,100,104,112,160,176,192,196, %T A324652 200,204,208,220,224,260,264,272,304,320,336,352,368,384,392,416,448, %U A324652 464,496,544,550,580,608,640,648,650,672,704,736,768,784,832,896,928,992,1032,1040,1044,1056,1060,1068,1088,1104,1120,1184,1216 %N A324652 Numbers k such that A318468(k) (bitwise-AND of 2*k and sigma(k)) is equal to 2*k. %C A324652 Positions of zeros in A324658, fixed points of A324659. %C A324652 Intersection with A324649 gives A324643. %C A324652 Intersection with A324726 gives A000396. %C A324652 In the range 1..2^32 there are only 22 odd terms. See A324647. %H A324652 Antti Karttunen, <a href="/A324652/b324652.txt">Table of n, a(n) for n = 1..20000</a> %H A324652 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A324652 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %t A324652 Select[Range[2000], 2*# == BitAnd[2*#, DivisorSigma[1, #]] &] (* _Paolo Xausa_, Mar 11 2024 *) %o A324652 (PARI) for(n=1,oo,if((n+n)==bitand(2*n,sigma(n)), print1(n, ", "))) %Y A324652 Cf. A000203, A191218, A318468, A324647, A324649, A324658, A324659, A324722, A324726. %Y A324652 Some subsequences: A000396, A324643, A324647 (the odd terms). %K A324652 nonn %O A324652 1,1 %A A324652 _Antti Karttunen_, Mar 14 2019