This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324671 #14 Mar 14 2019 14:54:12 %S A324671 0,1,4,3,47,46,6,6843,23,22,10,72,471,470,29,15,352,4843985,39,38, %T A324671 891114,21,102,57,56,7856204,45,44,28,1700,61960674,3702823,3702824, %U A324671 3702825,3702826,51,36,370,1213998,1213997,596,62,61,60,3855,45,417,260,261,237 %N A324671 Starting at n, a(n) is the distance from zero of the farthest point visited according to the following rules. On the k-th step (k=1,2,3,...) move a distance of k in the direction of zero. If the number landed on has been landed on before, move a distance of k away from zero instead. %H A324671 David Nacin, <a href="/A324671/a324671.png">A324671</a> %H A324671 David Nacin, <a href="/A324671/a324671_1.png">A324671(n)/A228474(n)</a> %e A324671 For n=2, the points visited are 2,1,-1,-4,0. Of those the one farthest from zero is -4 with a distance of 4, hence a(2) = 4. %o A324671 (Python) %o A324671 #Sequences A324660-A324692 generated by manipulating this trip function %o A324671 #spots - positions in order with possible repetition %o A324671 #flee - positions from which we move away from zero with possible repetition %o A324671 #stuck - positions from which we move to a spot already visited with possible repetition %o A324671 def trip(n): %o A324671 stucklist = list() %o A324671 spotsvisited = [n] %o A324671 leavingspots = list() %o A324671 turn = 0 %o A324671 forbidden = {n} %o A324671 while n != 0: %o A324671 turn += 1 %o A324671 sign = n // abs(n) %o A324671 st = sign * turn %o A324671 if n - st not in forbidden: %o A324671 n = n - st %o A324671 else: %o A324671 leavingspots.append(n) %o A324671 if n + st in forbidden: %o A324671 stucklist.append(n) %o A324671 n = n + st %o A324671 spotsvisited.append(n) %o A324671 forbidden.add(n) %o A324671 return {'stuck':stucklist, 'spots':spotsvisited, %o A324671 'turns':turn, 'flee':leavingspots} %o A324671 #Actual sequence %o A324671 def a(n): %o A324671 d = trip(n) %o A324671 return max(abs(i) for i in d['spots']) %Y A324671 Cf. A228474, A324660-A324692. Equals max(A248953, -A248952). %K A324671 nonn %O A324671 0,3 %A A324671 _David Nacin_, Mar 10 2019