This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324673 #18 Jul 23 2025 16:00:52 %S A324673 0,1,6,3,68,72,6,13205,31,36,10,104,836,836,43,15,570,9518374,57,60, %T A324673 1548481,21,203,80,87,15466141,71,71,28,2436,118129102,6815959, %U A324673 6815959,6815959,6815959,86,36,560,2261901,2261901,1091,103,103,103,6831,45,758,499 %N A324673 Starting at n, a(n) is the length of the smallest interval containing all points visited according to the following rules. On the k-th step (k=1,2,3,...) move a distance of k in the direction of zero. If the number landed on has been landed on before, move a distance of k away. %e A324673 For n=2, the points visited are 2,1,-1,-4,0. The smallest interval containing these is [-4,2] which has length 6, thus a(2) = 6. %o A324673 (Python) %o A324673 #Sequences A324660-A324692 generated by manipulating this trip function %o A324673 #spots - positions in order with possible repetition %o A324673 #flee - positions from which we move away from zero with possible repetition %o A324673 #stuck - positions from which we move to a spot already visited with possible repetition %o A324673 def trip(n): %o A324673 stucklist = list() %o A324673 spotsvisited = [n] %o A324673 leavingspots = list() %o A324673 turn = 0 %o A324673 forbidden = {n} %o A324673 while n != 0: %o A324673 turn += 1 %o A324673 sign = n // abs(n) %o A324673 st = sign * turn %o A324673 if n - st not in forbidden: %o A324673 n = n - st %o A324673 else: %o A324673 leavingspots.append(n) %o A324673 if n + st in forbidden: %o A324673 stucklist.append(n) %o A324673 n = n + st %o A324673 spotsvisited.append(n) %o A324673 forbidden.add(n) %o A324673 return {'stuck':stucklist, 'spots':spotsvisited, %o A324673 'turns':turn, 'flee':leavingspots} %o A324673 #Actual sequence %o A324673 def a(n): %o A324673 d=trip(n) %o A324673 return max(d['spots'])-min(d['spots']) %Y A324673 Cf. A228474, A324660-A324692. Equals A248953 - A248952. %K A324673 nonn %O A324673 0,3 %A A324673 _David Nacin_, Mar 10 2019