A324692 a(n) = partial sums of A324672.
0, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, -2, -1, 0, -1, -2, -3, -2, -1, 0, -1, -2, -1, -2, -3, -2, -1, 0, 1, 2, 3, 4, 3, 4, 5, 4, 3, 4, 3, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, -1, -2, -1, 0, 1, 2, 1, 0, -1, -2, -3, -4, -5, -4, -5, -6, -7, -6, -5, -4, -3, -2
Offset: 0
Keywords
Links
- David Nacin, A324692
Programs
-
Python
import functools #Sequences A324660-A324691 generated by manipulating this trip function #spots - positions in order with possible repetition #flee - positions from which we move away from zero with possible repetition #stuck - positions from which we move to a spot already visited with possible repetition def trip(n): stucklist = list() spotsvisited = [n] leavingspots = list() turn = 0 forbidden = {n} while n != 0: turn += 1 sign = n // abs(n) st = sign * turn if n - st not in forbidden: n = n - st else: leavingspots.append(n) if n + st in forbidden: stucklist.append(n) n = n + st spotsvisited.append(n) forbidden.add(n) return {'stuck':stucklist, 'spots':spotsvisited, 'turns':turn, 'flee':leavingspots} def sgn(x): if x: return x//abs(x) return 0 @functools.lru_cache(maxsize=None) def A324672(n): d = trip(n) mx=max([i for i in d['spots']]) mn=min([i for i in d['spots']]) return sgn(mx+mn) #Actual sequence def a(n): return sum(A324672(i) for i in range(n))