A324709 Larger of tri-unitary amicable numbers pair: numbers (m, n) such that tsigma(m) = tsigma(n) = m + n, where tsigma(n) is the sum of the tri-unitary divisors of n (A324706).
126, 846, 1260, 8460, 11760, 10856, 14595, 17700, 49308, 83142, 62700, 71145, 73962, 83904, 107550, 88730, 131100, 168730, 149952, 196650, 203432, 306612, 365700, 399592, 419256, 548550, 721962, 669688, 831420, 686072, 691256, 712216, 652664, 661824, 827700
Offset: 1
Keywords
Examples
126 is in the sequence since it is the larger of the amicable pair (114, 126): tsigma(114) = tsigma(126) = 114 + 126.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[p_, e_] := If[e == 3, (p^4-1)/(p-1), If[e==6, (p^8-1)/(p^2-1), p^e+1]]; tsigma[1]=1; tsigma[n_]:= Times @@ f @@@ FactorInteger[n]; s[n_] := tsigma[n] - n; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, m]] ,{n,1,700000}]; seq
Comments