This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324724 #9 Mar 17 2019 21:07:07 %S A324724 0,1,1,1,1,3,1,3,1,1,1,1,1,3,2,5,1,1,1,3,1,2,1,4,1,2,3,1,1,3,1,4,2,2, %T A324724 2,3,1,3,3,6,1,4,1,1,1,2,1,4,1,1,8,1,1,3,1,3,3,4,1,2,1,2,3,4,2,1,1,1, %U A324724 2,2,1,3,1,2,1,1,2,1,1,4,5,2,1,1,4,2,3,4,1,1,1,1,2,2,3,5,1,4,1,2,1,1,1,8,3 %N A324724 a(n) = A001511(A324712(n)), with a(n) = 0 if A324712(n) = 0. %H A324724 Antti Karttunen, <a href="/A324724/b324724.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552) %H A324724 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A324724 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A324724 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A324724 If A324712(n) = 0, then a(n) = 0, otherwise a(n) = A001511(A324712(n)). %F A324724 a(p) = 1 for all primes p. %F A324724 A324828(n) = [1 == a(n)], where [ ] is the Iverson bracket. %o A324724 (PARI) %o A324724 A324712(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, %o A324724 A323243(d)))); (v); }; \\ Needs also code from A323243. %o A324724 A001511ext(n) = if(!n,n,sign(n)*(1+valuation(n,2))); \\ Like A001511 but gives 0 for 0 and -A001511(-n) for negative numbers. %o A324724 A324724(n) = A001511ext(A324712(n)); %Y A324724 Cf. A001511, A323243, A324543, A324712, A324725, A324810, A324828, A324829. %K A324724 nonn %O A324724 1,6 %A A324724 _Antti Karttunen_, Mar 17 2019