This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324725 #7 Mar 17 2019 21:07:22 %S A324725 0,1,1,1,1,2,1,3,1,1,1,1,1,2,4,5,1,-1,1,3,1,5,1,4,1,3,3,1,1,2,1,4,3,5, %T A324725 3,3,1,2,2,6,1,-2,1,1,1,6,1,4,1,-1,2,1,1,3,1,3,2,2,1,2,1,5,3,4,4,1,1, %U A324725 1,3,-4,1,3,1,3,1,1,3,-1,1,4,5,5,1,1,2,4,2,4,1,1,1,1,7,5,2,7,1,-2,1,2,1,1,1,8,2 %N A324725 a(n) = sign(A324543(n)) * A001511(A324543(n)), with a(n) = 0 if A324543(n) = 0. %H A324725 Antti Karttunen, <a href="/A324725/b324725.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552) %H A324725 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A324725 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A324725 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A324725 If A324543(n) = 0, then a(n) = 0, otherwise a(n) = sign(A324543(n)) * A001511(A324543(n)). %F A324725 a(p) = 1 for all primes p. %F A324725 A324828(n) = [1 == abs(a(n))], where [ ] is the Iverson bracket. %o A324725 (PARI) %o A324725 A324543(n) = sumdiv(n,d,moebius(n/d)*A323243(d)); %o A324725 A001511ext(n) = if(!n,n,sign(n)*(1+valuation(n,2))); \\ Like A001511 but gives 0 for 0 and -A001511(-n) for negative numbers. %o A324725 A324725(n) = A001511ext(A324543(n)); %Y A324725 Cf. A001511, A324343, A324543, A324724, A324817, A324828. %K A324725 sign %O A324725 1,6 %A A324725 _Antti Karttunen_, Mar 17 2019