This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324738 #8 Aug 16 2019 14:47:53 %S A324738 1,2,3,5,8,13,26,42,72,120,232,376,752,1128,2256,4512,8256,13632, %T A324738 27264,42048,82944,158976,313344,497664,995328,1700352,3350016, %U A324738 5815296,11630592,17491968,34983936,56954880,108933120,210788352,418258944,804667392,1609334784 %N A324738 Number of subsets of {1...n} containing no element > 1 whose prime indices all belong to the subset. %C A324738 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A324738 Andrew Howroyd, <a href="/A324738/b324738.txt">Table of n, a(n) for n = 0..100</a> %e A324738 The a(0) = 1 through a(6) = 26 subsets: %e A324738 {} {} {} {} {} {} {} %e A324738 {1} {1} {1} {1} {1} {1} %e A324738 {2} {2} {2} {2} {2} %e A324738 {3} {3} {3} {3} %e A324738 {1,3} {4} {4} {4} %e A324738 {1,3} {5} {5} %e A324738 {2,4} {1,3} {6} %e A324738 {3,4} {1,5} {1,3} %e A324738 {2,4} {1,5} %e A324738 {2,5} {1,6} %e A324738 {3,4} {2,4} %e A324738 {4,5} {2,5} %e A324738 {2,4,5} {2,6} %e A324738 {3,4} %e A324738 {3,6} %e A324738 {4,5} %e A324738 {4,6} %e A324738 {5,6} %e A324738 {1,3,6} %e A324738 {1,5,6} %e A324738 {2,4,5} %e A324738 {2,4,6} %e A324738 {2,5,6} %e A324738 {3,4,6} %e A324738 {4,5,6} %e A324738 {2,4,5,6} %t A324738 Table[Length[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,10}] %o A324738 (PARI) %o A324738 pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))} %o A324738 a(n)={my(p=vector(n,k,if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i])); %o A324738 ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<<k)), t)); t))(1,0)} \\ _Andrew Howroyd_, Aug 16 2019 %Y A324738 The maximal case is A324744. The case of subsets of {2...n} is A324739. The strict integer partition version is A324749. The integer partition version is A324754. The Heinz number version is A324759. An infinite version is A324694. %Y A324738 Cf. A000720, A001221, A001462, A007097, A076078, A084422, A085945, A112798, A276625, A279861, A290689, A290822, A304360, A306844. %Y A324738 Cf. A324695, A324736, A324741, A324750, A324755, A324760. %K A324738 nonn %O A324738 0,2 %A A324738 _Gus Wiseman_, Mar 13 2019 %E A324738 Terms a(21) and beyond from _Andrew Howroyd_, Aug 16 2019