This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324741 #9 Aug 16 2019 14:48:51 %S A324741 1,2,3,5,8,13,19,30,54,96,156,248,440,688,1120,1864,3664,5856,11232, %T A324741 16896,31296,53952,91008,137472,270528,516720,863088,1710816,3173856, %U A324741 4836672,9329472,14897376,29788128,52256448,88429248,166037184,331648704,497685888,829449600 %N A324741 Number of subsets of {1...n} containing no prime indices of the elements. %C A324741 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A324741 Andrew Howroyd, <a href="/A324741/b324741.txt">Table of n, a(n) for n = 0..100</a> %e A324741 The a(0) = 1 through a(6) = 19 subsets: %e A324741 {} {} {} {} {} {} {} %e A324741 {1} {1} {1} {1} {1} {1} %e A324741 {2} {2} {2} {2} {2} %e A324741 {3} {3} {3} {3} %e A324741 {1,3} {4} {4} {4} %e A324741 {1,3} {5} {5} %e A324741 {2,4} {1,3} {6} %e A324741 {3,4} {1,5} {1,3} %e A324741 {2,4} {1,5} %e A324741 {2,5} {2,4} %e A324741 {3,4} {2,5} %e A324741 {4,5} {3,4} %e A324741 {2,4,5} {3,6} %e A324741 {4,5} %e A324741 {4,6} %e A324741 {5,6} %e A324741 {2,4,5} %e A324741 {3,4,6} %e A324741 {4,5,6} %e A324741 An example for n = 20 is {5,6,7,9,10,12,14,15,16,19,20}, with prime indices: %e A324741 5: {3} %e A324741 6: {1,2} %e A324741 7: {4} %e A324741 9: {2,2} %e A324741 10: {1,3} %e A324741 12: {1,1,2} %e A324741 14: {1,4} %e A324741 15: {2,3} %e A324741 16: {1,1,1,1} %e A324741 19: {8} %e A324741 20: {1,1,3} %e A324741 None of these prime indices {1,2,3,4,8} belong to the subset, as required. %t A324741 Table[Length[Select[Subsets[Range[n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,10}] %o A324741 (PARI) %o A324741 pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))} %o A324741 a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i])); %o A324741 ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitand(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<<k)), t)); t))(1,0)} \\ _Andrew Howroyd_, Aug 16 2019 %Y A324741 The maximal case is A324743. The strict integer partition version is A324751. The integer partition version is A324756. The Heinz number version is A324758. An infinite version is A304360. %Y A324741 Cf. A000720, A001462, A007097, A076078, A084422, A112798, A276625, A279861, A290689, A290822, A304360, A306844. %Y A324741 Cf. A324695, A324736, A324742. %K A324741 nonn %O A324741 0,2 %A A324741 _Gus Wiseman_, Mar 15 2019 %E A324741 Terms a(21) and beyond from _Andrew Howroyd_, Aug 16 2019