This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324742 #12 Aug 22 2019 08:24:11 %S A324742 1,2,3,6,10,16,24,48,84,144,228,420,648,1080,1800,3600,5760,11136, %T A324742 16704,31104,53568,90624,136896,269952,515712,862080,1708800,3171840, %U A324742 4832640,9325440,14890752,29781504,52245504,88418304,166017024,331628544,497645568,829409280 %N A324742 Number of subsets of {2...n} containing no prime indices of the elements. %C A324742 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A324742 Andrew Howroyd, <a href="/A324742/b324742.txt">Table of n, a(n) for n = 1..100</a> %e A324742 The a(1) = 1 through a(6) = 16 subsets: %e A324742 {} {} {} {} {} {} %e A324742 {2} {2} {2} {2} {2} %e A324742 {3} {3} {3} {3} %e A324742 {4} {4} {4} %e A324742 {2,4} {5} {5} %e A324742 {3,4} {2,4} {6} %e A324742 {2,5} {2,4} %e A324742 {3,4} {2,5} %e A324742 {4,5} {3,4} %e A324742 {2,4,5} {3,6} %e A324742 {4,5} %e A324742 {4,6} %e A324742 {5,6} %e A324742 {2,4,5} %e A324742 {3,4,6} %e A324742 {4,5,6} %e A324742 An example for n = 20 is {4,5,6,12,17,18,19}, with prime indices: %e A324742 4: {1,1} %e A324742 5: {3} %e A324742 6: {1,2} %e A324742 12: {1,1,2} %e A324742 17: {7} %e A324742 18: {1,2,2} %e A324742 19: {8} %e A324742 None of these prime indices {1,2,3,7,8} belong to the set, as required. %t A324742 Table[Length[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,10}] %o A324742 (PARI) %o A324742 pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))} %o A324742 a(n)={my(p=vector(n-1,k,pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i])); %o A324742 ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitand(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<<k)), t)); t))(1,0)} \\ _Andrew Howroyd_, Aug 16 2019 %Y A324742 The maximal case is A324763. The version for subsets of {1...n} is A324741. The strict integer partition version is A324752. The integer partition version is A324757. The Heinz number version is A324761. An infinite version is A304360. %Y A324742 Cf. A000720, A001462, A007097, A076078, A084422, A085945, A112798, A276625, A290689, A290822, A306844, A324764. %Y A324742 Cf. A324695, A324737, A324743, A324751, A324756, A324758. %K A324742 nonn %O A324742 1,2 %A A324742 _Gus Wiseman_, Mar 15 2019 %E A324742 Terms a(21) and beyond from _Andrew Howroyd_, Aug 16 2019