This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324748 #10 Aug 22 2019 08:23:49 %S A324748 1,1,0,1,0,1,1,1,0,2,1,2,3,2,2,4,3,4,3,5,6,9,8,7,8,11,12,13,15,17,22, %T A324748 22,20,28,31,32,36,41,43,53,53,59,70,76,77,89,99,108,124,135,139,160, %U A324748 172,188,209,229,243,274,298,315,353,391,417,457,496,538,588 %N A324748 Number of strict integer partitions of n containing all prime indices of the parts. %C A324748 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A324748 The first 15 terms count the following integer partitions. %e A324748 1: (1) %e A324748 3: (2,1) %e A324748 5: (4,1) %e A324748 6: (3,2,1) %e A324748 7: (4,2,1) %e A324748 9: (8,1) %e A324748 9: (6,2,1) %e A324748 10: (4,3,2,1) %e A324748 11: (8,2,1) %e A324748 11: (5,3,2,1) %e A324748 12: (9,2,1) %e A324748 12: (7,4,1) %e A324748 12: (6,3,2,1) %e A324748 13: (8,4,1) %e A324748 13: (6,4,2,1) %e A324748 14: (8,3,2,1) %e A324748 14: (7,4,2,1) %e A324748 15: (12,2,1) %e A324748 15: (9,3,2,1) %e A324748 15: (8,4,2,1) %e A324748 15: (5,4,3,2,1) %e A324748 An example for n = 6 is (20,18,11,5,3,2,1), with prime indices: %e A324748 20: {1,1,3} %e A324748 18: {1,2,2} %e A324748 11: {5} %e A324748 5: {3} %e A324748 3: {2} %e A324748 2: {1} %e A324748 1: {} %e A324748 All of these prime indices {1,2,3,5} belong to the partition, as required. %t A324748 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SubsetQ[#,PrimePi/@First/@Join@@FactorInteger/@DeleteCases[#,1]]&]],{n,0,30}] %Y A324748 The subset version is A324736. The non-strict version is A324753. The Heinz number version is A290822. An infinite version is A324698. %Y A324748 Cf. A000720, A001462, A007097, A074971, A078374, A112798, A276625, A279861, A290689, A290760, A305713. %Y A324748 Cf. A324697, A324737, A324751. %K A324748 nonn %O A324748 0,10 %A A324748 _Gus Wiseman_, Mar 15 2019