cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324749 Number of strict integer partitions of n containing no part > 1 whose prime indices all belong to the partition.

This page as a plain text file.
%I A324749 #5 Mar 16 2019 10:12:26
%S A324749 1,1,1,1,2,1,3,4,3,4,6,6,8,11,10,14,14,19,21,26,28,35,38,44,50,60,65,
%T A324749 79,88,98,113,131,144,165,185,211,234,268,297,334,374,420,470,525,584,
%U A324749 649,727,801,902,998,1100,1220,1357,1500,1657,1833,2029,2220,2462
%N A324749 Number of strict integer partitions of n containing no part > 1 whose prime indices all belong to the partition.
%C A324749 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A324749 The a(0) = 1 through a(10) = 6 strict integer partitions:
%e A324749   ()  (1)  (2)  (3)  (4)    (5)  (6)    (7)    (8)    (9)    (10)
%e A324749                      (3,1)       (4,2)  (4,3)  (6,2)  (5,4)  (6,4)
%e A324749                                  (5,1)  (5,2)  (7,1)  (6,3)  (7,3)
%e A324749                                         (6,1)         (7,2)  (8,2)
%e A324749                                                              (9,1)
%e A324749                                                              (6,3,1)
%t A324749 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]
%Y A324749 The subset version is A324738. The non-strict version is A324754. The Heinz number version is A324759. An infinite version is A324694.
%Y A324749 Cf. A000720, A001462, A007097, A074971, A078374, A112798, A276625, A290822, A305713.
%Y A324749 Cf. A324744, A324750, A324755, A324760.
%K A324749 nonn
%O A324749 0,5
%A A324749 _Gus Wiseman_, Mar 15 2019