cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324750 Number of strict integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.

This page as a plain text file.
%I A324750 #7 Mar 16 2019 10:12:33
%S A324750 1,0,1,1,1,1,2,3,2,4,4,4,6,8,8,11,10,15,16,19,23,27,28,35,39,47,50,63,
%T A324750 68,77,91,102,114,130,147,169,187,213,237,268,300,336,380,422,472,525,
%U A324750 587,647,731,810,895,996,1102,1227,1355,1498,1661,1818,2020,2221
%N A324750 Number of strict integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.
%C A324750 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A324750 The a(2) = 1 through a(17) = 15 strict integer partitions (A...H = 10...17):
%e A324750   2  3  4  5  6   7   8   9   A   B    C    D    E    F    G    H
%e A324750               42  43  62  54  64  65   75   76   86   87   97   98
%e A324750                   52      63  73  83   84   85   95   96   A6   A7
%e A324750                           72  82  542  93   94   A4   A5   C4   B6
%e A324750                                        A2   A3   B3   B4   D3   C5
%e A324750                                        642  B2   C2   C3   E2   D4
%e A324750                                             643  752  D2   763  E3
%e A324750                                             652  842  654  862  F2
%e A324750                                                       762  943  854
%e A324750                                                       843  A42  863
%e A324750                                                       852       872
%e A324750                                                                 A43
%e A324750                                                                 A52
%e A324750                                                                 B42
%e A324750                                                                 6542
%t A324750 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]
%Y A324750 The subset version is A324739. The non-strict version is A324755. The Heinz number version is A324760. An infinite version is A324694.
%Y A324750 Cf. A000720, A001462, A007097, A074971, A078374, A112798, A276625, A290822, A304360, A305713, A306844.
%Y A324750 Cf. A324696, A324737, A324742, A324744, A324764.
%K A324750 nonn
%O A324750 0,7
%A A324750 _Gus Wiseman_, Mar 15 2019