cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324751 Number of strict integer partitions of n containing no prime indices of the parts.

This page as a plain text file.
%I A324751 #6 Mar 16 2019 10:12:41
%S A324751 1,1,1,1,2,1,3,3,2,4,5,5,6,8,8,12,10,14,13,18,19,26,25,30,34,39,40,51,
%T A324751 55,60,71,77,90,97,111,123,136,153,170,179,216,230,264,282,322,345,
%U A324751 385,423,470,513,573,629,686,755,834,910,1005,1095,1194,1303,1433
%N A324751 Number of strict integer partitions of n containing no prime indices of the parts.
%C A324751 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A324751 The a(1) = 1 through a(13) = 8 strict integer partitions (A...D = 10...13):
%e A324751   1   2   3   4    5   6    7    8    9    A    B     C     D
%e A324751               31       42   43   71   54   64   65    75    76
%e A324751                        51   52        63   73   83    84    85
%e A324751                                       72   82   542   93    94
%e A324751                                            91   731   A2    B2
%e A324751                                                       B1    643
%e A324751                                                             751
%e A324751                                                             931
%t A324751 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]
%Y A324751 The subset version is A324741, with maximal case A324743. The non-strict version is A324756. The Heinz number version is A324758. An infinite version is A304360.
%Y A324751 Cf. A000720, A001462, A007097, A074971, A078374, A112798, A276625, A290822, A305713, A306844, A324764.
%Y A324751 Cf. A324695, A324742, A324748.
%K A324751 nonn
%O A324751 0,5
%A A324751 _Gus Wiseman_, Mar 16 2019