This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324752 #5 Mar 16 2019 10:12:50 %S A324752 1,0,1,1,1,1,2,3,1,4,4,4,5,6,7,10,9,12,12,16,17,22,22,26,31,35,37,46, %T A324752 50,55,66,70,82,90,101,114,127,143,159,172,202,215,246,267,301,327, %U A324752 366,402,447,491,545,600,655,722,795,875,964,1050,1152,1259,1383 %N A324752 Number of strict integer partitions of n not containing 1 or any prime indices of the parts. %C A324752 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A324752 The a(2) = 1 through a(17) = 12 strict integer partitions (A...H = 10...17): %e A324752 2 3 4 5 6 7 8 9 A B C D E F G H %e A324752 42 43 54 64 65 75 76 86 87 97 98 %e A324752 52 63 73 83 84 85 95 96 A6 A7 %e A324752 72 82 542 93 94 A4 A5 C4 B6 %e A324752 A2 B2 B3 B4 D3 C5 %e A324752 643 752 C3 E2 D4 %e A324752 842 D2 763 E3 %e A324752 654 943 854 %e A324752 843 A42 863 %e A324752 852 872 %e A324752 A52 %e A324752 B42 %e A324752 An example for n = 60 is (19,14,13,7,5,2), with prime indices: %e A324752 19: {8} %e A324752 14: {1,4} %e A324752 13: {6} %e A324752 7: {4} %e A324752 5: {3} %e A324752 2: {1} %e A324752 None of these prime indices {1,3,4,6,8} belong to the partition, as required. %t A324752 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}] %Y A324752 The subset version is A324742, with maximal case is A324763. The non-strict version is A324757. The Heinz number version is A324761. An infinite version is A304360. %Y A324752 Cf. A000720, A001462, A007097, A074971, A078374, A112798, A276625, A290822, A305713, A306844, A324764. %Y A324752 Cf. A324695, A324743, A324748, A324751, A324756, A324758. %K A324752 nonn %O A324752 0,7 %A A324752 _Gus Wiseman_, Mar 16 2019