cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324752 Number of strict integer partitions of n not containing 1 or any prime indices of the parts.

This page as a plain text file.
%I A324752 #5 Mar 16 2019 10:12:50
%S A324752 1,0,1,1,1,1,2,3,1,4,4,4,5,6,7,10,9,12,12,16,17,22,22,26,31,35,37,46,
%T A324752 50,55,66,70,82,90,101,114,127,143,159,172,202,215,246,267,301,327,
%U A324752 366,402,447,491,545,600,655,722,795,875,964,1050,1152,1259,1383
%N A324752 Number of strict integer partitions of n not containing 1 or any prime indices of the parts.
%C A324752 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A324752 The a(2) = 1 through a(17) = 12 strict integer partitions (A...H = 10...17):
%e A324752   2  3  4  5  6   7   8  9   A   B    C   D    E    F    G    H
%e A324752               42  43     54  64  65   75  76   86   87   97   98
%e A324752                   52     63  73  83   84  85   95   96   A6   A7
%e A324752                          72  82  542  93  94   A4   A5   C4   B6
%e A324752                                       A2  B2   B3   B4   D3   C5
%e A324752                                           643  752  C3   E2   D4
%e A324752                                                842  D2   763  E3
%e A324752                                                     654  943  854
%e A324752                                                     843  A42  863
%e A324752                                                     852       872
%e A324752                                                               A52
%e A324752                                                               B42
%e A324752 An example for n = 60 is (19,14,13,7,5,2), with prime indices:
%e A324752   19: {8}
%e A324752   14: {1,4}
%e A324752   13: {6}
%e A324752    7: {4}
%e A324752    5: {3}
%e A324752    2: {1}
%e A324752 None of these prime indices {1,3,4,6,8} belong to the partition, as required.
%t A324752 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]
%Y A324752 The subset version is A324742, with maximal case is A324763. The non-strict version is A324757. The Heinz number version is A324761. An infinite version is A304360.
%Y A324752 Cf. A000720, A001462, A007097, A074971, A078374, A112798, A276625, A290822, A305713, A306844, A324764.
%Y A324752 Cf. A324695, A324743, A324748, A324751, A324756, A324758.
%K A324752 nonn
%O A324752 0,7
%A A324752 _Gus Wiseman_, Mar 16 2019