cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324756 Number of integer partitions of n containing no prime indices of the parts.

This page as a plain text file.
%I A324756 #5 Mar 18 2019 08:13:23
%S A324756 1,1,2,2,4,3,7,7,9,11,16,16,24,25,34,39,50,54,70,79,96,111,135,152,
%T A324756 186,208,249,285,335,377,448,506,588,664,777,873,1010,1139,1309,1471,
%U A324756 1697,1890,2175,2435,2772,3106,3532,3941,4478,4995,5643,6297,7107,7897
%N A324756 Number of integer partitions of n containing no prime indices of the parts.
%C A324756 These could be described as anti-transitive integer partitions.
%C A324756 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A324756 The a(1) = 1 through a(8) = 9 integer partitions:
%e A324756   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%e A324756        (11)  (111)  (22)    (311)    (33)      (43)       (44)
%e A324756                     (31)    (11111)  (42)      (52)       (71)
%e A324756                     (1111)           (51)      (331)      (422)
%e A324756                                      (222)     (511)      (2222)
%e A324756                                      (3111)    (31111)    (3311)
%e A324756                                      (111111)  (1111111)  (5111)
%e A324756                                                           (311111)
%e A324756                                                           (11111111)
%t A324756 Table[Length[Select[IntegerPartitions[n],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]
%Y A324756 The subset version is A324741, with maximal case A324743. The strict case is A324751. The Heinz number version is A324758. An infinite version is A324695.
%Y A324756 Cf. A000720, A000837, A001462, A051424, A112798, A276625, A304360, A306844, A324764, A324742, A324753.
%K A324756 nonn
%O A324756 0,3
%A A324756 _Gus Wiseman_, Mar 17 2019