This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324756 #5 Mar 18 2019 08:13:23 %S A324756 1,1,2,2,4,3,7,7,9,11,16,16,24,25,34,39,50,54,70,79,96,111,135,152, %T A324756 186,208,249,285,335,377,448,506,588,664,777,873,1010,1139,1309,1471, %U A324756 1697,1890,2175,2435,2772,3106,3532,3941,4478,4995,5643,6297,7107,7897 %N A324756 Number of integer partitions of n containing no prime indices of the parts. %C A324756 These could be described as anti-transitive integer partitions. %C A324756 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A324756 The a(1) = 1 through a(8) = 9 integer partitions: %e A324756 (1) (2) (3) (4) (5) (6) (7) (8) %e A324756 (11) (111) (22) (311) (33) (43) (44) %e A324756 (31) (11111) (42) (52) (71) %e A324756 (1111) (51) (331) (422) %e A324756 (222) (511) (2222) %e A324756 (3111) (31111) (3311) %e A324756 (111111) (1111111) (5111) %e A324756 (311111) %e A324756 (11111111) %t A324756 Table[Length[Select[IntegerPartitions[n],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}] %Y A324756 The subset version is A324741, with maximal case A324743. The strict case is A324751. The Heinz number version is A324758. An infinite version is A324695. %Y A324756 Cf. A000720, A000837, A001462, A051424, A112798, A276625, A304360, A306844, A324764, A324742, A324753. %K A324756 nonn %O A324756 0,3 %A A324756 _Gus Wiseman_, Mar 17 2019