This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324757 #5 Mar 18 2019 08:13:32 %S A324757 1,0,1,1,2,1,4,3,4,6,9,7,14,12,19,21,28,29,41,45,56,64,81,89,114,125, %T A324757 154,176,211,236,288,324,383,432,514,578,678,766,891,1006,1176,1306, %U A324757 1525,1711,1966,2212,2538,2839,3258,3646,4150,4647,5288,5891,6698,7472 %N A324757 Number of integer partitions of n not containing 1 or any prime indices of the parts. %C A324757 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A324757 The a(2) = 1 through a(10) = 9 integer partitions: %e A324757 (2) (3) (4) (5) (6) (7) (8) (9) (A) %e A324757 (22) (33) (43) (44) (54) (55) %e A324757 (42) (52) (422) (63) (64) %e A324757 (222) (2222) (72) (73) %e A324757 (333) (82) %e A324757 (522) (433) %e A324757 (442) %e A324757 (4222) %e A324757 (22222) %t A324757 Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}] %Y A324757 The subset version is A324742, with maximal case A324763. The strict case is A324752. The Heinz number version is A324761. An infinite version is A324695. %Y A324757 Cf. A000720, A000837, A001462, A051424, A112798, A276625, A290822, A304360, A306844, A324764, A324742, A324753, A324756. %K A324757 nonn %O A324757 0,5 %A A324757 _Gus Wiseman_, Mar 17 2019