cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324757 Number of integer partitions of n not containing 1 or any prime indices of the parts.

This page as a plain text file.
%I A324757 #5 Mar 18 2019 08:13:32
%S A324757 1,0,1,1,2,1,4,3,4,6,9,7,14,12,19,21,28,29,41,45,56,64,81,89,114,125,
%T A324757 154,176,211,236,288,324,383,432,514,578,678,766,891,1006,1176,1306,
%U A324757 1525,1711,1966,2212,2538,2839,3258,3646,4150,4647,5288,5891,6698,7472
%N A324757 Number of integer partitions of n not containing 1 or any prime indices of the parts.
%C A324757 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A324757 The a(2) = 1 through a(10) = 9 integer partitions:
%e A324757   (2)  (3)  (4)   (5)  (6)    (7)   (8)     (9)    (A)
%e A324757             (22)       (33)   (43)  (44)    (54)   (55)
%e A324757                        (42)   (52)  (422)   (63)   (64)
%e A324757                        (222)        (2222)  (72)   (73)
%e A324757                                             (333)  (82)
%e A324757                                             (522)  (433)
%e A324757                                                    (442)
%e A324757                                                    (4222)
%e A324757                                                    (22222)
%t A324757 Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]
%Y A324757 The subset version is A324742, with maximal case A324763. The strict case is A324752. The Heinz number version is A324761. An infinite version is A324695.
%Y A324757 Cf. A000720, A000837, A001462, A051424, A112798, A276625, A290822, A304360, A306844, A324764, A324742, A324753, A324756.
%K A324757 nonn
%O A324757 0,5
%A A324757 _Gus Wiseman_, Mar 17 2019