cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324758 Heinz numbers of integer partitions containing no prime indices of the parts.

This page as a plain text file.
%I A324758 #6 Mar 18 2019 08:14:17
%S A324758 1,2,3,4,5,7,8,9,10,11,13,16,17,19,20,21,22,23,25,27,29,31,32,33,34,
%T A324758 35,37,40,41,43,44,46,47,49,50,51,53,57,59,61,62,63,64,65,67,68,71,73,
%U A324758 77,79,80,81,82,83,85,87,88,89,91,92,93,94,95,97,99,100,101
%N A324758 Heinz numbers of integer partitions containing no prime indices of the parts.
%C A324758 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A324758 These could be described as anti-transitive numbers (cf. A290822), as they are numbers x such that if prime(y) divides x and prime(z) divides y, then prime(z) does not divide x.
%C A324758 Also numbers n such that A003963(n) is coprime to n.
%e A324758 The sequence of terms together with their prime indices begins:
%e A324758    1: {}
%e A324758    2: {1}
%e A324758    3: {2}
%e A324758    4: {1,1}
%e A324758    5: {3}
%e A324758    7: {4}
%e A324758    8: {1,1,1}
%e A324758    9: {2,2}
%e A324758   10: {1,3}
%e A324758   11: {5}
%e A324758   13: {6}
%e A324758   16: {1,1,1,1}
%e A324758   17: {7}
%e A324758   19: {8}
%e A324758   20: {1,1,3}
%e A324758   21: {2,4}
%e A324758   22: {1,5}
%e A324758   23: {9}
%e A324758   25: {3,3}
%e A324758   27: {2,2,2}
%t A324758 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A324758 Select[Range[100],Intersection[primeMS[#],Union@@primeMS/@primeMS[#]]=={}&]
%Y A324758 The subset version is A324741, with maximal case A324743. The strict integer partition version is A324751. The integer partition version is A324756. An infinite version is A324695.
%Y A324758 Cf. A000720, A001221, A001462, A007097, A056239, A112798, A276625, A289509, A290822, A304360, A306844, A324742, A324753, A324764.
%K A324758 nonn
%O A324758 1,2
%A A324758 _Gus Wiseman_, Mar 17 2019