This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324758 #6 Mar 18 2019 08:14:17 %S A324758 1,2,3,4,5,7,8,9,10,11,13,16,17,19,20,21,22,23,25,27,29,31,32,33,34, %T A324758 35,37,40,41,43,44,46,47,49,50,51,53,57,59,61,62,63,64,65,67,68,71,73, %U A324758 77,79,80,81,82,83,85,87,88,89,91,92,93,94,95,97,99,100,101 %N A324758 Heinz numbers of integer partitions containing no prime indices of the parts. %C A324758 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A324758 These could be described as anti-transitive numbers (cf. A290822), as they are numbers x such that if prime(y) divides x and prime(z) divides y, then prime(z) does not divide x. %C A324758 Also numbers n such that A003963(n) is coprime to n. %e A324758 The sequence of terms together with their prime indices begins: %e A324758 1: {} %e A324758 2: {1} %e A324758 3: {2} %e A324758 4: {1,1} %e A324758 5: {3} %e A324758 7: {4} %e A324758 8: {1,1,1} %e A324758 9: {2,2} %e A324758 10: {1,3} %e A324758 11: {5} %e A324758 13: {6} %e A324758 16: {1,1,1,1} %e A324758 17: {7} %e A324758 19: {8} %e A324758 20: {1,1,3} %e A324758 21: {2,4} %e A324758 22: {1,5} %e A324758 23: {9} %e A324758 25: {3,3} %e A324758 27: {2,2,2} %t A324758 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A324758 Select[Range[100],Intersection[primeMS[#],Union@@primeMS/@primeMS[#]]=={}&] %Y A324758 The subset version is A324741, with maximal case A324743. The strict integer partition version is A324751. The integer partition version is A324756. An infinite version is A324695. %Y A324758 Cf. A000720, A001221, A001462, A007097, A056239, A112798, A276625, A289509, A290822, A304360, A306844, A324742, A324753, A324764. %K A324758 nonn %O A324758 1,2 %A A324758 _Gus Wiseman_, Mar 17 2019