This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324759 #4 Mar 18 2019 08:14:25 %S A324759 1,2,3,4,5,7,8,9,10,11,13,16,17,19,20,21,22,23,25,26,27,29,31,32,33, %T A324759 34,35,37,39,40,41,43,44,46,47,49,50,51,52,53,57,58,59,61,62,63,64,65, %U A324759 67,68,71,73,74,77,79,80,81,82,83,85,86,87,88,89,91,92,93 %N A324759 Heinz numbers of integer partitions containing no part > 1 whose prime indices all belong to the partition. %C A324759 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %e A324759 The sequence of terms together with their prime indices begins: %e A324759 1: {} %e A324759 2: {1} %e A324759 3: {2} %e A324759 4: {1,1} %e A324759 5: {3} %e A324759 7: {4} %e A324759 8: {1,1,1} %e A324759 9: {2,2} %e A324759 10: {1,3} %e A324759 11: {5} %e A324759 13: {6} %e A324759 16: {1,1,1,1} %e A324759 17: {7} %e A324759 19: {8} %e A324759 20: {1,1,3} %e A324759 21: {2,4} %e A324759 22: {1,5} %e A324759 23: {9} %e A324759 25: {3,3} %e A324759 26: {1,6} %t A324759 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A324759 Select[Range[100],!MemberQ[DeleteCases[primeMS[#],1],k_/;SubsetQ[primeMS[#],primeMS[k]]]&] %Y A324759 The subset version is A324738, with maximal case A324744. The strict integer partition version is A324749. The integer partition version is A324754. An infinite version is A324694. %Y A324759 Cf. A000720, A001221, A007097, A056239, A112798, A276625, A289509, A290822, A306844, A324695, A324750, A324755, A324760. %K A324759 nonn %O A324759 1,2 %A A324759 _Gus Wiseman_, Mar 17 2019