This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324761 #6 Mar 18 2019 08:14:40 %S A324761 1,3,5,7,9,11,13,17,19,21,23,25,27,29,31,33,35,37,41,43,47,49,51,53, %T A324761 57,59,61,63,65,67,71,73,77,79,81,83,85,87,89,91,93,95,97,99,101,103, %U A324761 107,109,113,115,121,123,125,127,129,131,133,137,139,143,147,149 %N A324761 Heinz numbers of integer partitions not containing 1 or any prime indices of the parts. %C A324761 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %e A324761 The sequence of terms together with their prime indices begins: %e A324761 1: {} %e A324761 3: {2} %e A324761 5: {3} %e A324761 7: {4} %e A324761 9: {2,2} %e A324761 11: {5} %e A324761 13: {6} %e A324761 17: {7} %e A324761 19: {8} %e A324761 21: {2,4} %e A324761 23: {9} %e A324761 25: {3,3} %e A324761 27: {2,2,2} %e A324761 29: {10} %e A324761 31: {11} %e A324761 33: {2,5} %e A324761 35: {3,4} %e A324761 37: {12} %e A324761 41: {13} %e A324761 43: {14} %t A324761 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A324761 Select[Range[1,100,2],Intersection[primeMS[#],Union@@primeMS/@primeMS[#]]=={}&] %Y A324761 The subset version is A324742, with maximal case A324763. The strict integer partition version is A324752. The integer partition version is A324757. An infinite version is A324695. %Y A324761 Cf. A000720, A001221, A007097, A056239, A112798, A276625, A289509, A290822, A304360, A306844, A324743, A324751, A324756, A324758, A324764. %K A324761 nonn %O A324761 1,2 %A A324761 _Gus Wiseman_, Mar 17 2019