This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324764 #11 Jun 20 2020 02:04:59 %S A324764 1,1,1,1,3,4,9,20,41,89,196,443,987,2246,5114,11757,27122,62898, %T A324764 146392,342204,802429,1887882 %N A324764 Number of anti-transitive rooted identity trees with n nodes. %C A324764 A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root. It is anti-transitive if the branches of the branches of the root are disjoint from the branches of the root. %C A324764 Also the number of finitary sets S with n brackets where no element of an element of S is also an element of S. For example, the a(8) = 20 finitary sets are (o = {}): %C A324764 {{{{{{{o}}}}}}} %C A324764 {{{{{o,{o}}}}}} %C A324764 {{{{o,{{o}}}}}} %C A324764 {{{o,{{{o}}}}}} %C A324764 {{{o,{o,{o}}}}} %C A324764 {{{{o},{{o}}}}} %C A324764 {{o,{{{{o}}}}}} %C A324764 {{o,{{o,{o}}}}} %C A324764 {{o,{o,{{o}}}}} %C A324764 {{{o},{{{o}}}}} %C A324764 {{{o},{o,{o}}}} %C A324764 {{o,{o},{{o}}}} %C A324764 {o,{{{{{o}}}}}} %C A324764 {o,{{{o,{o}}}}} %C A324764 {o,{{o,{{o}}}}} %C A324764 {o,{{o},{{o}}}} %C A324764 {{o},{{{{o}}}}} %C A324764 {{o},{{o,{o}}}} %C A324764 {{o},{o,{{o}}}} %C A324764 {{{o}},{o,{o}}} %H A324764 Gus Wiseman, <a href="/A324764/a324764.png">The a(9) = 41 anti-transitive rooted identity trees</a>. %e A324764 The a(1) = 1 through a(7) = 9 anti-transitive rooted identity trees: %e A324764 o (o) ((o)) (((o))) ((o(o))) (((o(o)))) ((o(o(o)))) %e A324764 (o((o))) ((o((o)))) (o((o(o)))) %e A324764 ((((o)))) (o(((o)))) ((((o(o))))) %e A324764 (((((o))))) (((o)((o)))) %e A324764 (((o((o))))) %e A324764 ((o)(((o)))) %e A324764 ((o(((o))))) %e A324764 (o((((o))))) %e A324764 ((((((o)))))) %t A324764 idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]]; %t A324764 Table[Length[Select[idall[n],Intersection[Union@@#,#]=={}&]],{n,10}] %Y A324764 Cf. A000081, A004111, A276625, A279861, A290689, A304360, A306844 (non-identity version), A316500, A317787, A318185. %Y A324764 Cf. A324694, A324751, A324756, A324758, A324765, A324767, A324768, A324770, A324839, A324840, A324844. %K A324764 nonn,more %O A324764 1,5 %A A324764 _Gus Wiseman_, Mar 17 2019 %E A324764 a(21)-a(22) from _Jinyuan Wang_, Jun 20 2020