This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324766 #5 Mar 18 2019 08:15:16 %S A324766 1,2,3,4,5,7,8,9,10,11,16,17,19,20,21,22,23,25,27,29,31,32,33,34,35, %T A324766 40,44,46,49,50,51,53,57,59,62,63,64,67,68,71,73,77,79,80,81,83,85,87, %U A324766 88,92,93,95,97,99,100,103,109,115,118,121,124,125,127,128 %N A324766 Matula-Goebel numbers of recursively anti-transitive rooted trees. %C A324766 The complement is {6, 12, 13, 14, 15, 18, 24, 26, 28, 30, 36, ...}. %C A324766 An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of a terminal subtree is a branch of the same subtree. %e A324766 The sequence of recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins: %e A324766 1: o %e A324766 2: (o) %e A324766 3: ((o)) %e A324766 4: (oo) %e A324766 5: (((o))) %e A324766 7: ((oo)) %e A324766 8: (ooo) %e A324766 9: ((o)(o)) %e A324766 10: (o((o))) %e A324766 11: ((((o)))) %e A324766 16: (oooo) %e A324766 17: (((oo))) %e A324766 19: ((ooo)) %e A324766 20: (oo((o))) %e A324766 21: ((o)(oo)) %e A324766 22: (o(((o)))) %e A324766 23: (((o)(o))) %e A324766 25: (((o))((o))) %e A324766 27: ((o)(o)(o)) %e A324766 29: ((o((o)))) %e A324766 31: (((((o))))) %e A324766 32: (ooooo) %e A324766 33: ((o)(((o)))) %e A324766 34: (o((oo))) %e A324766 35: (((o))(oo)) %e A324766 40: (ooo((o))) %e A324766 44: (oo(((o)))) %e A324766 46: (o((o)(o))) %e A324766 49: ((oo)(oo)) %e A324766 50: (o((o))((o))) %t A324766 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A324766 totantiQ[n_]:=And[Intersection[Union@@primeMS/@primeMS[n],primeMS[n]]=={},And@@totantiQ/@primeMS[n]]; %t A324766 Select[Range[100],totantiQ] %Y A324766 Cf. A007097, A000081, A290689, A303431, A304360, A306844, A316502, A318186. %Y A324766 Cf. A324695, A324751, A324756, A324758, A324765, A324767, A324769, A324838, A324841, A324844. %K A324766 nonn %O A324766 1,2 %A A324766 _Gus Wiseman_, Mar 17 2019