This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324767 #7 Mar 18 2019 08:15:22 %S A324767 1,1,1,1,2,3,5,9,17,33,63,126,254,511,1039,2124,4371,9059,18839,39339, %T A324767 82385,173111,364829,771010,1633313 %N A324767 Number of recursively anti-transitive rooted identity trees with n nodes. %C A324767 An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of any terminal subtree is a branch of the same subtree. It is an identity tree if there are no repeated branches directly under a common root. %C A324767 Also the number of finitary sets with n brackets where, at any level, no element of an element of a set is an element of the same set. For example, the a(8) = 9 finitary sets are (o = {}): %C A324767 {{{{{{{o}}}}}}} %C A324767 {{{{o,{{o}}}}}} %C A324767 {{{o,{{{o}}}}}} %C A324767 {{o,{{{{o}}}}}} %C A324767 {{{o},{{{o}}}}} %C A324767 {o,{{{{{o}}}}}} %C A324767 {o,{{o,{{o}}}}} %C A324767 {{o},{{{{o}}}}} %C A324767 {{o},{o,{{o}}}} %C A324767 The Matula-Goebel numbers of these trees are given by A324766. %e A324767 The a(4) = 1 through a(8) = 9 recursively anti-transitive rooted identity trees: %e A324767 (((o))) (o((o))) ((o((o)))) (((o((o))))) ((o)(o((o)))) %e A324767 ((((o)))) (o(((o)))) ((o)(((o)))) (o((o((o))))) %e A324767 (((((o))))) ((o(((o))))) ((((o((o)))))) %e A324767 (o((((o))))) (((o)(((o))))) %e A324767 ((((((o)))))) (((o(((o)))))) %e A324767 ((o)((((o))))) %e A324767 ((o((((o)))))) %e A324767 (o(((((o)))))) %e A324767 (((((((o))))))) %t A324767 iallt[n_]:=Select[Union[Sort/@Join@@(Tuples[iallt/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&&Intersection[Union@@#,#]=={}&]; %t A324767 Table[Length[iallt[n]],{n,10}] %Y A324767 Cf. A000081, A004111, A276625, A279861, A290689, A290760, A304360, A306844, A316500. %Y A324767 Cf. A324695, A324751, A324758, A324764 (non-recursive version), A324765 (non-identity version), A324766, A324770, A324839, A324840, A324844. %K A324767 nonn,more %O A324767 1,5 %A A324767 _Gus Wiseman_, Mar 17 2019