This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324769 #4 Mar 18 2019 08:15:37 %S A324769 1,2,3,4,5,7,8,9,11,13,16,17,19,21,23,25,27,29,31,32,35,37,41,43,47, %T A324769 49,51,53,57,59,61,63,64,65,67,71,73,77,79,81,83,85,89,91,95,97,101, %U A324769 103,107,109,113,115,121,125,127,128,129,131,133,137,139,143,147 %N A324769 Matula-Goebel numbers of fully anti-transitive rooted trees. %C A324769 An unlabeled rooted tree is fully anti-transitive if no proper terminal subtree of any branch of the root is a branch of the root. %e A324769 The sequence of fully anti-transitive rooted trees together with their Matula-Goebel numbers begins: %e A324769 1: o %e A324769 2: (o) %e A324769 3: ((o)) %e A324769 4: (oo) %e A324769 5: (((o))) %e A324769 7: ((oo)) %e A324769 8: (ooo) %e A324769 9: ((o)(o)) %e A324769 11: ((((o)))) %e A324769 13: ((o(o))) %e A324769 16: (oooo) %e A324769 17: (((oo))) %e A324769 19: ((ooo)) %e A324769 21: ((o)(oo)) %e A324769 23: (((o)(o))) %e A324769 25: (((o))((o))) %e A324769 27: ((o)(o)(o)) %e A324769 29: ((o((o)))) %e A324769 31: (((((o))))) %e A324769 32: (ooooo) %e A324769 35: (((o))(oo)) %e A324769 37: ((oo(o))) %e A324769 41: (((o(o)))) %e A324769 43: ((o(oo))) %e A324769 47: (((o)((o)))) %e A324769 49: ((oo)(oo)) %t A324769 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A324769 fullantiQ[n_]:=Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={}; %t A324769 Select[Range[100],fullantiQ] %Y A324769 Cf. A000081, A007097, A276625, A290760, A304360, A306844. %Y A324769 Cf. A324695, A324751, A324756, A324758, A324766, A324768, A324770. %Y A324769 Cf. A324838, A324841, A324845, A324846. %K A324769 nonn %O A324769 1,2 %A A324769 _Gus Wiseman_, Mar 17 2019