A324791 Value of A076042 at its n-th low point.
0, 5, 7, 4, 19, 104, 74, 193, 515, 725, 241, 1948, 2948, 709, 8746, 16451, 48443, 47915, 61369, 41566, 136585, 710582, 476516, 1363747, 3165833, 5491067, 11906702, 15854273, 6895924, 38766838, 63676139, 3935833, 209116033, 219826349, 265573243, 263220940
Offset: 0
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..4000 (Terms through a(42) from Giovanni Resta)
- N. J. A. Sloane, Table of n, a(n) for n = 0..10001
Crossrefs
Programs
-
Maple
# Maple program from N. J. A. Sloane, Oct 03 2019; guessb = A325056, guessc = A324791 (this sequence). Digits := 64; f := proc(k,M) local j1, twoL, RL, kprime, Mprime; j1 := 3*k^2+7*k+17/4+2*M; if issqr(j1) then lprint("Beware, perfect square: k,M,j1 are ",k,M,j1); fi; twoL := -k-3/2+evalf(sqrt(j1)) ; RL := floor(twoL/2); Mprime := M+(k+1)^2 - (2*k*RL+3*RL+2*RL^2); kprime := 1+k+2*RL; [twol, RL, Mprime, kprime]; end; guessb:=[0,5]; b:=5; guessc:=[0,5]; c:=5; for i from 1 to 100 do t1:=f(b,c); b:=t1[4]; c:=t1[3]; guessb:=[op(guessb),b]; guessc:=[op(guessc),c]; od: guessb; guessc;
-
Mathematica
a=b=c=d=n=0; L={0}; While[Length[L] < 22, n++; a=b; b=c; c=d; d=c + If[c < n^2, n^2, -n^2]; If[a > b < c < d, AppendTo[L, b]]]; L (* Giovanni Resta, Oct 01 2019 *)
-
PARI
\\ See Tomas Rokicki's PARI program in A076042.
Extensions
More terms from Giovanni Resta, Oct 01 2019