cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324803 T(n,k) is the number of non-equivalent distinguishing partitions of the cycle on n vertices with at most k part. Square array read by descending antidiagonals, n >= 1, k >= 1.

This page as a plain text file.
%I A324803 #30 Nov 05 2019 06:00:36
%S A324803 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,
%T A324803 1,0,0,0,0,0,0,6,13,2,0,0,0,0,0,0,6,30,45,7,0,0,0,0,0,0,6,34,127,144,
%U A324803 12,0,0,0,0,0,0,6,34,176,532,416,31,0,0,0,0,0,0,6,34,185,871,1988,1221,57,0,0,0,0,0,0,6,34,185,996,3982
%N A324803 T(n,k) is the number of non-equivalent distinguishing partitions of the cycle on n vertices with at most k part.  Square array read by descending antidiagonals, n >= 1, k >= 1.
%C A324803 The cycle graph is defined for n >= 3; extended to n=1,2 using the closed form.
%C A324803 Two partitions P1 and P2 of a the vertex set of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. A distinguishing partition is a partition of the vertex set of G such that no nontrivial automorphism of G can preserve it. Here T(n,k)=Xi_k(C_n), the number of non-equivalent distinguishing partitions of the cycle on n vertices, with at most k parts.
%H A324803 Bahman Ahmadi, <a href="/A324803/a324803.txt">GAP Program</a>
%H A324803 B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, <a href="https://arxiv.org/abs/1910.12102">Number of Distinguishing Colorings and Partitions</a>, arXiv:1910.12102 [math.CO], 2019.
%F A324803 T(n,k) = Sum_{i<=k} A324802(n,i).
%e A324803 Table begins:
%e A324803 =================================================================
%e A324803   n/k | 1   2    3     4     5     6     7     8     9    10
%e A324803 ------+----------------------------------------------------------
%e A324803     1 | 0,  0,   0,    0,    0,    0,    0,    0,    0,    0, ...
%e A324803     2 | 0,  0,   0,    0,    0,    0,    0,    0,    0,    0, ...
%e A324803     3 | 0,  0,   0,    0,    0,    0,    0,    0,    0,    0, ...
%e A324803     4 | 0,  0,   0,    0,    0,    0,    0,    0,    0,    0, ...
%e A324803     5 | 0,  0,   0,    0,    0,    0,    0,    0,    0,    0, ...
%e A324803     6 | 0,  0,   4,    6,    6,    6,    6,    6,    6,    6, ...
%e A324803     7 | 0,  1,  13,   30,   34,   34,   34,   34,   34,   34, ...
%e A324803     8 | 0,  2,  45,  127,  176,  185,  185,  185,  185,  185, ...
%e A324803     9 | 0,  7, 144,  532,  871,  996, 1011, 1011, 1011, 1011, ...
%e A324803    10 | 0, 12, 416, 1988, 3982, 5026, 5280, 5304, 5304, 5304, ...
%e A324803   ...
%e A324803 For n=7, we can partition the vertices of the cycle C_7 with at most 3 parts, in 13 ways, such that all these partitions are distinguishing for C_7 and that all the 13 partitions are non-equivalent. The partitions are as follows:
%e A324803     { { 1 }, { 2, 3 }, { 4, 5, 6, 7 } },
%e A324803     { { 1 }, { 2, 3, 4, 6 }, { 5, 7 } },
%e A324803     { { 1 }, { 2, 3, 4, 7 }, { 5, 6 } },
%e A324803     { { 1 }, { 2, 3, 5, 6 }, { 4, 7 } },
%e A324803     { { 1 }, { 2, 3, 5, 7 }, { 4, 6 } },
%e A324803     { { 1 }, { 2, 3, 6 }, { 4, 5, 7 } },
%e A324803     { { 1 }, { 2, 3, 7 }, { 4, 5, 6 } },
%e A324803     { { 1 }, { 2, 4, 5, 6 }, { 3, 7 } },
%e A324803     { { 1 }, { 2, 4, 7 }, { 3, 5, 6 } },
%e A324803     { { 1, 2 }, { 3, 4, 6 }, { 5, 7 } },
%e A324803     { { 1, 2 }, { 3, 5, 6 }, { 4, 7 } },
%e A324803     { { 1, 2, 4 }, { 3, 6 }, { 5, 7 } },
%e A324803     { { 1, 2, 3, 5 }, { 4, 6, 7 } }.
%Y A324803 Column k=2 is A327734.
%Y A324803 Cf. A309784, A309785, A320748, A152176, A320647, A324802.
%K A324803 nonn,tabl
%O A324803 1,34
%A A324803 _Bahman Ahmadi_, Sep 04 2019