This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324813 #16 Apr 19 2019 11:12:05 %S A324813 1,2,3,5,7,10,11,13,17,19,21,23,29,31,37,41,43,47,50,53,55,59,61,67, %T A324813 71,73,79,83,89,91,97,98,101,103,107,109,113,127,131,137,139,147,149, %U A324813 151,154,157,163,167,173,179,181,187,191,193,197,199,211,223,227,229,233,239,241,247,251,257,263,266,269,271,277,281,283,293,307 %N A324813 Numbers n for which A156552(n) is a square or a twice a square. %C A324813 Union of {1} and sequence A005940(1+A028982(n)), n >= 1, sorted into ascending order. %C A324813 After the initial 1, gives the positions of ones in A324885. %H A324813 Antti Karttunen, <a href="/A324813/b324813.txt">Table of n, a(n) for n = 1..10000</a> %H A324813 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A324813 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a> %H A324813 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %t A324813 Select[Range@ 320, AnyTrue[{#, #/2}, IntegerQ@ Sqrt@ # &] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &] (* _Michael De Vlieger_, Mar 27 2019 *) %o A324813 (PARI) %o A324813 A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by _David A. Corneth_ %o A324813 A324823(n) = if(1==n,0, n=A156552(n); (issquare(n) || (!(n%2) && issquare(n/2)))); %o A324813 for(n=1, oo, if((1==n)||A324823(n), print1(n, ", "))); %o A324813 (PARI) is(n) = { n = A156552(n); n == 0 || n >>= (valuation(n, 2)%2); issquare(n); }; \\ _David A. Corneth_, Mar 16 2019 %Y A324813 Cf. A005940, A028982, A156552, A324823 (characteristic function for terms > 1), A324825, A324885. %Y A324813 Cf. A000040, A324812 (subsequences), A324814. %K A324813 nonn,base %O A324813 1,2 %A A324813 _Antti Karttunen_, Mar 16 2019