cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324814 Numbers n > 1 for which sigma(A156552(n)) == 2 (mod 4).

This page as a plain text file.
%I A324814 #7 Mar 16 2019 21:45:03
%S A324814 6,14,15,18,33,35,38,42,54,58,65,69,70,75,77,90,93,102,106,110,119,
%T A324814 130,143,145,150,162,165,174,177,185,190,209,217,221,230,231,234,242,
%U A324814 245,273,285,287,290,294,299,305,323,330,338,350,357,375,378,390,407,410,414,434,437,450,455,465,469,473,483,493,494,507
%N A324814 Numbers n > 1 for which sigma(A156552(n)) == 2 (mod 4).
%C A324814 Sequence A005940(1+A191217(n)), n >= 1, sorted into ascending order.
%H A324814 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H A324814 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A324814 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%o A324814 (PARI)
%o A324814 A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by _David A. Corneth_
%o A324814 A324824(n) = ((n>1)&&(2==(sigma(A156552(n))%4)));
%o A324814 A324824(n) = (2==(A323243(n)%4)); \\ Alternatively.
%o A324814 for(n=1,oo,if(A324824(n),print1(n,", ")));
%Y A324814 Cf. A000203, A005940, A191217, A324812, A324813, A324824 (characteristic function).
%K A324814 nonn
%O A324814 1,1
%A A324814 _Antti Karttunen_, Mar 16 2019