cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324835 Decimal expansion of eta_4, a constant related to the asymptotic density of certain sets of residues.

Original entry on oeis.org

0, 1, 2, 5, 9, 3, 0, 2, 8, 3, 9, 8, 6, 4, 2, 0, 1, 3, 6, 5, 2, 9, 9, 1, 1, 0, 2, 2, 6, 2, 2, 9, 2, 1, 7, 6, 9, 4, 7, 3, 4, 3, 2, 0, 8, 9, 8, 5, 4, 2, 2, 1, 8, 6, 1, 4, 7, 2, 5, 7, 8, 9, 3, 6, 6, 9, 5, 4, 7, 5, 7, 7, 9, 0, 8, 4, 7, 0, 9, 9, 1, 8, 3, 2, 8, 4, 7, 7, 0, 8, 9, 7, 8, 5, 9, 1, 1, 0, 1, 3, 9, 8
Offset: 0

Views

Author

Jean-François Alcover, Mar 17 2019

Keywords

Examples

			0.0125930283986420136529911022622921769473432089854221861472578936695...
		

Crossrefs

Cf. A154945 (eta_1), A324833 (eta_2), A324834 (eta_3), A324836 (eta_5).

Programs

  • Mathematica
    digits = 101; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[eta4 = Sum[n(n+1)(n+2)/6 PrimeZetaP[2n+6], {n, 1, m}], 10, digits][[1]]; rd[m0]; rd[m = 2 m0]; While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[eta4, digits]]; rd[m]

Formula

Sum_{p prime} 1/(p^2-1)^4.
Sum_{n>0} (n(n+1)(n+2)/6) P(2n+6) where P is the prime zeta P function.