A324840 Number of fully recursively anti-transitive rooted trees with n nodes.
1, 1, 2, 3, 5, 7, 14, 23, 46, 85, 165, 313, 625, 1225, 2459, 4919, 9928, 20078, 40926, 83592
Offset: 1
Examples
The a(1) = 1 through a(7) = 14 fully recursively anti-transitive rooted trees: o (o) (oo) (ooo) (oooo) (ooooo) (oooooo) ((o)) ((oo)) ((ooo)) ((oooo)) ((ooooo)) (((o))) (((oo))) (((ooo))) (((oooo))) ((o)(o)) ((o)(oo)) ((o)(ooo)) ((((o)))) ((((oo)))) ((oo)(oo)) (((o)(o))) ((((ooo)))) (((((o))))) (((o))(oo)) (((o)(oo))) ((o)((oo))) ((o)(o)(o)) (((((oo))))) ((((o)(o)))) (((o))((o))) ((((((o))))))
Links
Crossrefs
Programs
-
Mathematica
dallt[n_]:=Select[Union[Sort/@Join@@(Tuples[dallt/@#]&/@IntegerPartitions[n-1])],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&]; Table[Length[dallt[n]],{n,10}]
Comments