This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324841 #5 Mar 18 2019 08:16:02 %S A324841 1,2,3,4,5,7,8,9,11,16,17,19,21,23,25,27,31,32,35,49,51,53,57,59,63, %T A324841 64,67,73,77,81,83,85,95,97,103,115,121,125,127,128,131,133,147,149, %U A324841 153,159,161,171,175,177,187,189,201,209,217,227,233,241,243,245 %N A324841 Matula-Goebel numbers of fully recursively anti-transitive rooted trees. %C A324841 An unlabeled rooted tree is fully recursively anti-transitive if no proper terminal subtree of any terminal subtree is a branch of the larger subtree. %e A324841 The sequence of fully recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins: %e A324841 1: o %e A324841 2: (o) %e A324841 3: ((o)) %e A324841 4: (oo) %e A324841 5: (((o))) %e A324841 7: ((oo)) %e A324841 8: (ooo) %e A324841 9: ((o)(o)) %e A324841 11: ((((o)))) %e A324841 16: (oooo) %e A324841 17: (((oo))) %e A324841 19: ((ooo)) %e A324841 21: ((o)(oo)) %e A324841 23: (((o)(o))) %e A324841 25: (((o))((o))) %e A324841 27: ((o)(o)(o)) %e A324841 31: (((((o))))) %e A324841 32: (ooooo) %e A324841 35: (((o))(oo)) %e A324841 49: ((oo)(oo)) %e A324841 51: ((o)((oo))) %e A324841 53: ((oooo)) %e A324841 57: ((o)(ooo)) %e A324841 59: ((((oo)))) %e A324841 63: ((o)(o)(oo)) %t A324841 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A324841 fratQ[n_]:=And[Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={},And@@fratQ/@primeMS[n]]; %t A324841 Select[Range[100],fratQ] %Y A324841 Cf. A000081, A007097, A290689, A303431, A304360, A306844, A316502, A318185, A318186. %Y A324841 Cf. A324695, A324751, A324756, A324758, A324766, A324768, A324769. %Y A324841 Cf. A324838, A324840, A324844. %K A324841 nonn %O A324841 1,2 %A A324841 _Gus Wiseman_, Mar 17 2019