A324842 Matula-Goebel numbers of rooted trees where the branches of any branch of any terminal subtree form a submultiset of the branches of the same subtree.
1, 2, 4, 6, 8, 12, 16, 18, 24, 28, 32, 36, 48, 54, 56, 64, 72, 78, 84, 96, 108, 112, 128, 144, 152, 156, 162, 168, 192, 196, 216, 224, 234, 252, 256, 288, 304, 312, 324, 336, 384, 392, 432, 444, 448, 456, 468, 486, 504, 512, 576, 588, 608, 624, 648, 672, 702
Offset: 1
Keywords
Examples
The sequence of rooted trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 4: (oo) 6: (o(o)) 8: (ooo) 12: (oo(o)) 16: (oooo) 18: (o(o)(o)) 24: (ooo(o)) 28: (oo(oo)) 32: (ooooo) 36: (oo(o)(o)) 48: (oooo(o)) 54: (o(o)(o)(o)) 56: (ooo(oo)) 64: (oooooo) 72: (ooo(o)(o)) 78: (o(o)(o(o))) 84: (oo(o)(oo)) 96: (ooooo(o))
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; qaQ[n_]:=And[And@@Table[Divisible[n,x],{x,primeMS[n]}],And@@qaQ/@primeMS[n]]; Select[Range[1000],qaQ]