cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324843 Number of unlabeled rooted trees with n nodes where the branches of any branch of any terminal subtree form a submultiset of the branches of the same subtree.

This page as a plain text file.
%I A324843 #6 Mar 19 2019 07:15:01
%S A324843 1,1,1,2,2,4,4,8,9,15,17,31,35,57,70,111,136,213,265,405,517,763,987,
%T A324843 1458,1893,2736,3611,5161,6836,9702
%N A324843 Number of unlabeled rooted trees with n nodes where the branches of any branch of any terminal subtree form a submultiset of the branches of the same subtree.
%C A324843 A subset of totally transitive rooted trees (A318185).
%e A324843 The a(1) = 1 through a(8) = 8 rooted trees:
%e A324843   o  (o)  (oo)  (ooo)   (oooo)   (ooooo)    (oooooo)    (ooooooo)
%e A324843                 (o(o))  (oo(o))  (oo(oo))   (ooo(oo))   (ooo(ooo))
%e A324843                                  (ooo(o))   (oooo(o))   (oooo(oo))
%e A324843                                  (o(o)(o))  (oo(o)(o))  (ooooo(o))
%e A324843                                                         (oo(o)(oo))
%e A324843                                                         (ooo(o)(o))
%e A324843                                                         (o(o)(o)(o))
%e A324843                                                         (o(o)(o(o)))
%t A324843 submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
%t A324843 rallt[n_]:=Select[Union[Sort/@Join@@(Tuples[rallt/@#]&/@IntegerPartitions[n-1])],And@@Table[submultQ[b,#],{b,#}]&];
%t A324843 Table[Length[rallt[n]],{n,10}]
%Y A324843 The Matula-Goebel numbers of these trees are given by A324842.
%Y A324843 Cf. A000081, A279861, A290689, A290822, A318185.
%Y A324843 Cf. A324704, A324736, A324748, A324753, A324847, A324848, A324854.
%K A324843 nonn,more
%O A324843 1,4
%A A324843 _Gus Wiseman_, Mar 18 2019