cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324847 Numbers divisible by at least one of their prime indices.

This page as a plain text file.
%I A324847 #10 Mar 19 2019 17:38:47
%S A324847 2,4,6,8,10,12,14,15,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,45,
%T A324847 46,48,50,52,54,55,56,58,60,62,64,66,68,70,72,74,75,76,78,80,82,84,86,
%U A324847 88,90,92,94,96,98,100,102,104,105,106,108,110,112,114,116
%N A324847 Numbers divisible by at least one of their prime indices.
%C A324847 A prime index of n is a number m such that prime(m) divides n.
%C A324847 If n is in the sequence, then so are all multiples of n. - _Robert Israel_, Mar 19 2019
%H A324847 Robert Israel, <a href="/A324847/b324847.txt">Table of n, a(n) for n = 1..10000</a>
%e A324847 The sequence of terms together with their prime indices begins:
%e A324847    2: {1}
%e A324847    4: {1,1}
%e A324847    6: {1,2}
%e A324847    8: {1,1,1}
%e A324847   10: {1,3}
%e A324847   12: {1,1,2}
%e A324847   14: {1,4}
%e A324847   15: {2,3}
%e A324847   16: {1,1,1,1}
%e A324847   18: {1,2,2}
%e A324847   20: {1,1,3}
%e A324847   22: {1,5}
%e A324847   24: {1,1,1,2}
%e A324847   26: {1,6}
%e A324847   28: {1,1,4}
%e A324847   30: {1,2,3}
%e A324847   32: {1,1,1,1,1}
%e A324847   34: {1,7}
%e A324847   36: {1,1,2,2}
%p A324847 filter:= proc(n) local F;
%p A324847   F:= map(numtheory:-pi, numtheory:-factorset(n));
%p A324847   ormap(t -> n mod t = 0, F);
%p A324847 end proc:
%p A324847 select(filter, [$1..200]); # _Robert Israel_, Mar 19 2019
%t A324847 Select[Range[100],Or@@Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>Divisible[#,PrimePi[p]]]&]
%o A324847 (PARI) isok(n) = {my(f = factor(n)[,1]); for (k=1, #f, if (!(n % primepi(f[k])), return (1));); return (0);} \\ _Michel Marcus_, Mar 19 2019
%Y A324847 Complement of A324846.
%Y A324847 Cf. A003963, A056239, A112798, A120383, A289509, A290822, A304360, A306844.
%Y A324847 Cf. A324695, A324741, A324743, A324847, A324756, A324758, A324765, A324848, A324849, A324850, A324852, A324853.
%K A324847 nonn
%O A324847 1,1
%A A324847 _Gus Wiseman_, Mar 18 2019