This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324847 #10 Mar 19 2019 17:38:47 %S A324847 2,4,6,8,10,12,14,15,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,45, %T A324847 46,48,50,52,54,55,56,58,60,62,64,66,68,70,72,74,75,76,78,80,82,84,86, %U A324847 88,90,92,94,96,98,100,102,104,105,106,108,110,112,114,116 %N A324847 Numbers divisible by at least one of their prime indices. %C A324847 A prime index of n is a number m such that prime(m) divides n. %C A324847 If n is in the sequence, then so are all multiples of n. - _Robert Israel_, Mar 19 2019 %H A324847 Robert Israel, <a href="/A324847/b324847.txt">Table of n, a(n) for n = 1..10000</a> %e A324847 The sequence of terms together with their prime indices begins: %e A324847 2: {1} %e A324847 4: {1,1} %e A324847 6: {1,2} %e A324847 8: {1,1,1} %e A324847 10: {1,3} %e A324847 12: {1,1,2} %e A324847 14: {1,4} %e A324847 15: {2,3} %e A324847 16: {1,1,1,1} %e A324847 18: {1,2,2} %e A324847 20: {1,1,3} %e A324847 22: {1,5} %e A324847 24: {1,1,1,2} %e A324847 26: {1,6} %e A324847 28: {1,1,4} %e A324847 30: {1,2,3} %e A324847 32: {1,1,1,1,1} %e A324847 34: {1,7} %e A324847 36: {1,1,2,2} %p A324847 filter:= proc(n) local F; %p A324847 F:= map(numtheory:-pi, numtheory:-factorset(n)); %p A324847 ormap(t -> n mod t = 0, F); %p A324847 end proc: %p A324847 select(filter, [$1..200]); # _Robert Israel_, Mar 19 2019 %t A324847 Select[Range[100],Or@@Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>Divisible[#,PrimePi[p]]]&] %o A324847 (PARI) isok(n) = {my(f = factor(n)[,1]); for (k=1, #f, if (!(n % primepi(f[k])), return (1));); return (0);} \\ _Michel Marcus_, Mar 19 2019 %Y A324847 Complement of A324846. %Y A324847 Cf. A003963, A056239, A112798, A120383, A289509, A290822, A304360, A306844. %Y A324847 Cf. A324695, A324741, A324743, A324847, A324756, A324758, A324765, A324848, A324849, A324850, A324852, A324853. %K A324847 nonn %O A324847 1,1 %A A324847 _Gus Wiseman_, Mar 18 2019