This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324849 #12 Mar 21 2019 04:16:06 %S A324849 1,2,3,4,5,7,8,9,10,11,13,14,16,17,19,20,21,22,23,25,26,27,29,31,32, %T A324849 33,34,35,37,38,39,40,41,43,44,46,47,49,50,51,52,53,57,58,59,61,62,63, %U A324849 64,65,67,68,69,70,71,73,74,76,77,79,80,81,82,83,85,86,87 %N A324849 Positive integers divisible by none of their prime indices > 1. %C A324849 A prime index of n is a number m such that prime(m) divides n. %H A324849 Robert Israel, <a href="/A324849/b324849.txt">Table of n, a(n) for n = 1..10000</a> %e A324849 The sequence of terms together with their prime indices begins: %e A324849 1: {} %e A324849 2: {1} %e A324849 3: {2} %e A324849 4: {1,1} %e A324849 5: {3} %e A324849 7: {4} %e A324849 8: {1,1,1} %e A324849 9: {2,2} %e A324849 10: {1,3} %e A324849 11: {5} %e A324849 13: {6} %e A324849 14: {1,4} %e A324849 16: {1,1,1,1} %e A324849 17: {7} %e A324849 19: {8} %e A324849 20: {1,1,3} %e A324849 21: {2,4} %e A324849 22: {1,5} %e A324849 23: {9} %e A324849 25: {3,3} %p A324849 filter:= proc(n) andmap(t -> not ((n/numtheory:-pi(t))::integer), numtheory:-factorset(n) minus {2}) end proc: %p A324849 select(filter, [$1..200]); # _Robert Israel_, Mar 20 2019 %t A324849 Select[Range[100],!Or@@Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>If[p==2,False,Divisible[#,PrimePi[p]]]]&] %o A324849 (PARI) is(n) = my(f=factor(n)[, 1]~, idc=[]); for(k=1, #f, idc=concat(idc, [primepi(f[k])])); for(t=1, #idc, if(idc[t]==1, next); if(n%idc[t]==0, return(0))); 1 \\ _Felix Fröhlich_, Mar 21 2019 %Y A324849 Complement of A324771. %Y A324849 Cf. A003963, A056239, A112798, A120383, A289509, A304360, A306844. %Y A324849 Cf. A324695, A324741, A324743, A324756, A324758, A324765, A324846, A324847, A324848, A324850, A324852, A324853, A324856. %K A324849 nonn %O A324849 1,2 %A A324849 _Gus Wiseman_, Mar 18 2019