cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324851 Numbers > 1 divisible by the sum of their prime indices.

This page as a plain text file.
%I A324851 #13 Mar 20 2019 04:25:55
%S A324851 2,4,6,12,15,16,20,30,35,36,42,48,56,88,99,112,120,126,130,135,143,
%T A324851 144,160,162,180,192,210,216,220,221,228,231,242,250,256,270,275,280,
%U A324851 288,297,300,308,322,330,338,360,396,400,408,429,435,440,455,468,480,493
%N A324851 Numbers > 1 divisible by the sum of their prime indices.
%C A324851 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n). For example, the prime indices of 99 are {2,2,5}, with sum 9, a divisor of 99, so 99 is in the sequence.
%C A324851 For any k>=2, let d be a divisor of k such that d > A056239(k).  Then 2^(d-A056239(k))*k is in the sequence.  Similarly if k is in the sequence with d = A056239(k), then 2^d*k is in the sequence. - _Robert Israel_, Mar 19 2019
%H A324851 Robert Israel, <a href="/A324851/b324851.txt">Table of n, a(n) for n = 1..10000</a>
%e A324851 The sequence of terms together with their prime indices begins:
%e A324851     2: {1}
%e A324851     4: {1,1}
%e A324851     6: {1,2}
%e A324851    12: {1,1,2}
%e A324851    15: {2,3}
%e A324851    16: {1,1,1,1}
%e A324851    20: {1,1,3}
%e A324851    30: {1,2,3}
%e A324851    35: {3,4}
%e A324851    36: {1,1,2,2}
%e A324851    42: {1,2,4}
%e A324851    48: {1,1,1,1,2}
%e A324851    56: {1,1,1,4}
%e A324851    88: {1,1,1,5}
%e A324851    99: {2,2,5}
%e A324851   112: {1,1,1,1,4}
%e A324851   120: {1,1,1,2,3}
%e A324851   126: {1,2,2,4}
%e A324851   130: {1,3,6}
%e A324851   135: {2,2,2,3}
%p A324851 filter:= proc(n) local t; n mod add(numtheory:-pi(t[1])*t[2],t=ifactors(n)[2]) = 0 end proc:
%p A324851 select(filter, [$1..1000]); # _Robert Israel_, Mar 19 2019
%t A324851 Select[Range[2,100],Divisible[#,Plus@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]]&]
%o A324851 (PARI) isok(n) = {my(f = factor(n)); (n!=1) && !(n % sum(k=1, #f~, primepi(f[k,1])*f[k,2]));} \\ _Michel Marcus_, Mar 19 2019
%Y A324851 Cf. A003963, A036844, A056239, A112798, A120383, A290822, A306844.
%Y A324851 Cf. A324695, A324741, A324743, A324847, A324756, A324758, A324765, A324847, A324848, A324849, A324850, A324852.
%K A324851 nonn
%O A324851 1,1
%A A324851 _Gus Wiseman_, Mar 18 2019