A324855 Lexicographically earliest sequence containing 2 and all squarefree numbers > 2 whose prime indices already belong to the sequence.
2, 3, 5, 11, 15, 31, 33, 47, 55, 93, 127, 137, 141, 155, 165, 211, 235, 257, 341, 381, 411, 465, 487, 517, 633, 635, 685, 705, 709, 771, 773, 811, 907, 977, 1023, 1055, 1285, 1297, 1397, 1457, 1461, 1483, 1507, 1551, 1621, 1705, 1905, 2055, 2127, 2293, 2319
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 2: {1} 3: {2} 5: {3} 11: {5} 15: {2,3} 31: {11} 33: {2,5} 47: {15} 55: {3,5} 93: {2,11} 127: {31} 137: {33} 141: {2,15} 155: {3,11} 165: {2,3,5} 211: {47} 235: {3,15} 257: {55} 341: {5,11} 381: {2,31}
Links
- Robert Israel, Table of n, a(n) for n = 1..1567
- Gus Wiseman, The rooted identity trees whose Matula-Goebel numbers are the first 64 terms.
Crossrefs
Programs
-
Maple
S:= {2}: count:= 1: for n from 3 by 2 while count < 100 do F:= ifactors(n)[2]; if max(map(t -> t[2],F))=1 and {seq(numtheory:-pi(t[1]),t=F)} subset S then S:= S union {n}; count:= count+1; fi od: sort(convert(S,list)); # Robert Israel, Mar 22 2019
-
Mathematica
aQ[n_]:=Switch[n,1,False,2,True,?(!SquareFreeQ[#]&),False,,And@@Cases[FactorInteger[n],{p_,k_}:>aQ[PrimePi[p]]]]; Select[Range[1000],aQ]
Comments