cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324869 a(n) is the number of times A324862(d) attains the maximal value it obtains among the divisors d of n.

This page as a plain text file.
%I A324869 #6 Mar 27 2019 18:56:31
%S A324869 1,2,2,1,2,1,2,1,1,4,2,3,2,1,1,1,2,2,2,1,1,1,2,3,3,1,1,3,2,2,2,2,4,1,
%T A324869 1,1,2,1,1,1,2,2,2,3,2,1,2,2,3,6,1,3,2,2,1,3,1,1,2,2,2,1,2,1,4,3,2,3,
%U A324869 4,2,2,1,2,1,1,3,1,2,2,2,1,1,2,2,1,1,1,3,2,1,1,3,4,1,1,1,2,2,1,1,2,2,2,3,1
%N A324869 a(n) is the number of times A324862(d) attains the maximal value it obtains among the divisors d of n.
%H A324869 Antti Karttunen, <a href="/A324869/b324869.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)
%H A324869 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H A324869 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A324869 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A324869 a(n) = Sum_{d|n} [A324862(d) = A324864(n)], where [ ] is the Iverson bracket.
%F A324869 a(p) = 2 for all primes p.
%e A324869 Divisors of 9 are [1, 3, 4]. A324862 applied to these gives values [0, 0, 3], of which the largest (3) occurs just once, thus a(9) = 1.
%e A324869 Divisors of 10 are [1, 2, 5, 10]. A324862 applied to these gives values [0, 0, 0, 0], of which the largest (0) occurs just four times, thus a(10) = 4.
%e A324869 Divisors of 88 are [1, 2, 4, 8, 11, 22, 44, 88]. A324862 applied to these gives values [0, 0, 1, 0, 0, 1, 1, 0], of which the largest (which is 1) occurs three times, thus a(88) = 3.
%o A324869 (PARI) A324869(n) = { my(m=0,w,c=0); fordiv(n,d,w=A324862(d); if(w>=m,if(w==m,c++,c=1;m=w))); (c); };
%Y A324869 Cf. A324862, A324864.
%K A324869 nonn
%O A324869 1,2
%A A324869 _Antti Karttunen_, Mar 21 2019