This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A324874 #9 Mar 27 2019 18:57:02 %S A324874 0,0,0,1,0,1,0,1,3,0,0,1,0,1,4,4,0,1,0,1,5,1,0,1,0,1,4,1,0,1,0,1,0,1, %T A324874 5,4,0,1,7,1,0,1,0,1,3,1,0,1,0,0,2,1,0,1,6,1,9,1,0,1,0,1,3,6,0,1,0,1, %U A324874 0,1,0,5,0,1,5,1,6,1,0,1,4,1,0,1,8,1,11,1,0,6,7,1,0,1,9,5,0,0,7,5,0,1,0,1,6 %N A324874 a(n) is the binary length of A324398(n), where A324398(n) = A156552(n) AND (A323243(n) - A156552(n)). %H A324874 Antti Karttunen, <a href="/A324874/b324874.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552) %H A324874 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A324874 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A324874 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A324874 If A324398(n) = 0, a(n) = 0, otherwise a(n) = A070939(A324398(n)) = 1 + A000523(A324398(n)). %F A324874 a(n) = A324868(n) + A324881(n). %F A324874 a(p) = 0 for all primes p. %o A324874 (PARI) %o A324874 A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 %o A324874 A324398(n) = { my(k=A156552(n)); bitand(k,(A323243(n)-k)); }; \\ Needs also code from A323243. %o A324874 A324874(n) = #binary(A324398(n)); %Y A324874 Cf. A000523, A070939, A156552, A323243, A324398, A324862, A324864, A324868, A324881. %K A324874 nonn %O A324874 1,9 %A A324874 _Antti Karttunen_, Mar 27 2019