cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324882 a(1) = 0; for n > 1, a(n) = A001511(A324866(n)), where A324866(n) = A156552(n) OR (A323243(n) - A156552(n)).

This page as a plain text file.
%I A324882 #11 Mar 28 2019 20:24:01
%S A324882 0,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,3,1,2,1,1,1,1,1,2,1,
%T A324882 2,1,1,1,2,1,1,1,1,1,2,1,1,1,3,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,
%U A324882 2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,3,1,2,1,1,1,1,1,2,1,3,1,1,1,2,1,1,1,1,1,2
%N A324882 a(1) = 0; for n > 1, a(n) = A001511(A324866(n)), where A324866(n) = A156552(n) OR (A323243(n) - A156552(n)).
%C A324882 Terms 0 .. k occur for the first time at n = 1, 2, 9, 25, 133, 253, 559, 2159, 2489, 3151, 5597, 7967, ..., which after 2 seem all to be semiprimes, that is, A156552(n) has binary weight 2.
%H A324882 Antti Karttunen, <a href="/A324882/b324882.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)
%H A324882 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A324882 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A324882 a(1) = 0; for n > 1, a(n) = A001511(A324866(n)).
%F A324882 a(n) = A324884(n) - A324883(n).
%F A324882 a(p) = 1 for all primes p.
%o A324882 (PARI)
%o A324882 A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
%o A324882 A324866(n) = { my(k=A156552(n)); bitor(k,(A323243(n)-k)); }; \\ Needs also code from A323243.
%o A324882 A001511ext(n) = if(!n,n,sign(n)*(1+valuation(n,2))); \\ Like A001511 but gives 0 for 0 and -A001511(-n) for negative numbers.
%o A324882 A324882(n) = A001511ext(A324866(n));
%Y A324882 Cf. A001511, A156552, A323243, A324866, A324883, A324884.
%K A324882 nonn
%O A324882 1,9
%A A324882 _Antti Karttunen_, Mar 28 2019